A criterion for the half-plane property

被引:20
作者
Wagner, David G. [1 ]
Wei, Yehua [1 ]
机构
[1] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Matroid; Half-plane property; Rayleigh property; Stable polynomials; Hurwitz stable polynomial; POLYNOMIALS; MATROIDS; RAYLEIGH;
D O I
10.1016/j.disc.2008.02.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish a convenient necessary and sufficient condition for a multiaffine real polynomial to be stable, and use it to verify that the half-plane property holds for seven small matroids that resisted the efforts of Choe, Oxley, Sokal, and Wagner [Y.-B. Choe, J.G. Oxley, A.D. Sokal, D.G. Wagner, Homogeneous polynomials with the half-plane property, Adv. Appl. Math. 32 (2004) 88-187]. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:1385 / 1390
页数:6
相关论文
共 11 条
[1]  
BORCEA J, NEGATIVE DEPENDENCE
[2]   Polynomials with the half-plane property and matroid theory [J].
Braenden, Petter .
ADVANCES IN MATHEMATICS, 2007, 216 (01) :302-320
[3]   Polynomials with the half-plane property and the support theorems [J].
Choe, Y .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2005, 94 (01) :117-145
[4]   Homogeneous multivariate polynomials with the half-plane property [J].
Choe, YB ;
Oxley, JG ;
Sokal, AD ;
Wagner, DG .
ADVANCES IN APPLIED MATHEMATICS, 2004, 32 (1-2) :88-187
[5]  
CHOE YB, 2003, THESIS U WATERLOO
[6]   Rayleigh matroids [J].
Choe, Youngbin ;
Wagner, David G. .
COMBINATORICS PROBABILITY & COMPUTING, 2006, 15 (05) :765-781
[7]  
Reznick B., 2000, CONT MATH, V253, P251
[8]  
SOKAL AD, 2005, SURVEYS COMBINATORIC
[9]  
Wagner DG, 2005, ELECTRON J COMB, V12
[10]  
Wagner DG, 2005, ELECTRON J COMB, V11