An online platform for interactive feedback in biomedical machine learning

被引:8
作者
Abid, Abubakar [1 ,2 ]
Abdalla, Ali [2 ]
Abid, Ali [2 ]
Khan, Dawood [2 ]
Alfozan, Abdulrahman [2 ]
Zou, James [1 ,3 ]
机构
[1] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[2] Gradio Labs, Mountain View, CA USA
[3] Stanford Univ, Dept Biomed Data Sci, Stanford, CA 94305 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
D O I
10.1038/s42256-020-0147-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Machine learning models have great potential in biomedical applications. A new platform called GradioHub offers an interactive and intuitive way for clinicians and biomedical researchers to try out models and test their reliability on real-world, out-of-training data.
引用
收藏
页码:86 / 88
页数:3
相关论文
共 14 条
  • [1] A guide to deep learning in healthcare
    Esteva, Andre
    Robicquet, Alexandre
    Ramsundar, Bharath
    Kuleshov, Volodymyr
    DePristo, Mark
    Chou, Katherine
    Cui, Claire
    Corrado, Greg
    Thrun, Sebastian
    Dean, Jeff
    [J]. NATURE MEDICINE, 2019, 25 (01) : 24 - 29
  • [2] Adversarial attacks on medical machine learning
    Finlayson, Samuel G.
    Bowers, John D.
    Ito, Joichi
    Zittrain, Jonathan L.
    Beam, Andrew L.
    Kohane, Isaac S.
    [J]. SCIENCE, 2019, 363 (6433) : 1287 - 1289
  • [3] Ghorbani A., 2019, PREPRINT, DOI [10.1101/681676, DOI 10.1101/681676]
  • [4] Causability and explainability of artificial intelligence in medicine
    Holzinger, Andreas
    Langs, Georg
    Denk, Helmut
    Zatloukal, Kurt
    Mueller, Heimo
    [J]. WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2019, 9 (04)
  • [5] Interactive machine learning: experimental evidence for the human in the algorithmic loop: A case study on Ant Colony Optimization
    Holzinger, Andreas
    Plass, Markus
    Kickmeier-Rust, Michael
    Holzinger, Katharina
    Crisan, Gloria Cerasela
    Pintea, Camelia-M.
    Palade, Vasile
    [J]. APPLIED INTELLIGENCE, 2019, 49 (07) : 2401 - 2414
  • [6] Klemm S., 2018, PREPRINT
  • [7] New machine-learning technologies for computer-aided diagnosis
    Lynch, Charles J.
    Liston, Conor
    [J]. NATURE MEDICINE, 2018, 24 (09) : 1304 - 1305
  • [8] DASH: Deep Learning for the Automated Spectral Classification of Supernovae and Their Hosts
    Muthukrishna, Daniel
    Parkinson, David
    Tucker, Brad E.
    [J]. ASTROPHYSICAL JOURNAL, 2019, 885 (01)
  • [9] Making Machine Learning Models Clinically Useful
    Shah, Nigam H.
    Milstein, Arnold
    Bagley, Steven C.
    [J]. JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2019, 322 (14): : 1351 - 1352
  • [10] Deep Learning to Improve Breast Cancer Detection on Screening Mammography
    Shen, Li
    Margolies, Laurie R.
    Rothstein, Joseph H.
    Fluder, Eugene
    McBride, Russell
    Sieh, Weiva
    [J]. SCIENTIFIC REPORTS, 2019, 9 (1)