Pulsar Radio Emission Geometry

被引:0
|
作者
Gangadhara, R. T. [1 ]
机构
[1] Indian Inst Astrophys, Bangalore 560034, Karnataka, India
来源
TURBULENCE, DYNAMOS, ACCRETION DISKS, PULSARS AND COLLECTIVE PLASMA PROCESSES | 2009年
关键词
pulsars: general; radiation mechanisms: nonthermal; stars: magnetic fields; geometry; EMPIRICAL-THEORY; CIRCULAR-POLARIZATION; RADIATION; PROFILES; REGION; MODEL;
D O I
暂无
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Pulsar radio emission is belived to come from relativistic plasma accelerated along the dipolar magnetic field lines ill pulsar magnetosphere. The beamed emission by relativistic sources occur in the direction of tangents to the field lines ill the corotating frame, but in an inertial (lab) frame it is aberrated toward the direction of rotation. To receive such a beamed emission line-of-sight must align with the source velocity within the beaming angle 1/gamma, where gamma is the Lorentz factor of the source. By solving the viewing geometry, in an inclined and rotating dipole magnetic field, we. find the coordinates of the emission region in corotating frame. Next, give a general expression for the phase shift in the intensity profile in lab frame by taking into account of aberration, retardation and polar cap currents. By considering uniform and modulated emissions, we have simulated a few typical pulse profiles. The circular polarization of antisymmetric type is an intrinsic property of curvature radiation, and it survives only when there is modulation or discrete distribution in the emitting sources. Our model predicts a correlation between the polarization angle swing and antisymmetric circular polarization.
引用
收藏
页码:113 / 135
页数:23
相关论文
共 50 条
  • [11] Strong and weak pulsar radio emission due to thunderstorms and raindrops of particles in the magnetosphere
    Chen, X.
    Yan, Y.
    Han, J. L.
    Wang, C.
    Wang, P. F.
    Jing, W. C.
    Lee, K. J.
    Zhang, B.
    Xu, R. X.
    Wang, T.
    Yang, Z. L.
    Su, W. Q.
    Cai, N. N.
    Wang, W. Y.
    Qiao, G. J.
    Xu, J.
    Zhou, D. J.
    NATURE ASTRONOMY, 2023, 7 (10) : 1235 - 1244
  • [12] The pulsar synchrotron: coherent radio emission
    Contopoulos, I.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2009, 396 (01) : L6 - L10
  • [13] Is the Enigma of Pulsar Radio Emission Solved?
    Gil, Janusz A.
    Melikidze, George I.
    RADIO PULSARS: AN ASTROPHYSICAL KEY TO UNLOCK THE SECRETS OF THE UNIVERSE, 2011, 1357 : 289 - 293
  • [14] Pulsar spectra of radio emission
    Maron, O
    Kijak, J
    Kramer, M
    Wielebinski, R
    ASTRONOMY & ASTROPHYSICS SUPPLEMENT SERIES, 2000, 147 (02): : 195 - 203
  • [15] Mechanism of pulsar radio emission
    Gedalin, M
    Gruman, E
    Melrose, DB
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2002, 337 (02) : 422 - 430
  • [16] Radio emission region exposed: courtesy of the double pulsar
    Lomiashvili, David
    Lyutikov, Maxim
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2014, 441 (01) : 690 - 714
  • [17] A rotation-driven pulsar radio emission mechanism
    Melrose, D. B.
    Rafat, M. Z.
    Mastrano, A.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 500 (04) : 4549 - 4559
  • [18] Radio pulsar beam geometry at lower frequencies: bright sources outside the Arecibo sky
    Rankin, Joanna
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2022, 514 (03) : 3202 - 3211
  • [19] Linear polarization of pulsar radio emission'
    Gedalin, M
    Dzigan, Y
    ASTRONOMY & ASTROPHYSICS, 2005, 439 (01) : 23 - 28
  • [20] POLARIZED QUASIPERIODIC STRUCTURES IN PULSAR RADIO EMISSION REFLECT TEMPORAL MODULATIONS OF NON-STATIONARY PLASMA FLOW
    Mitra, Dipanjan
    Arjunwadkar, Mihir
    Rankin, Joanna M.
    ASTROPHYSICAL JOURNAL, 2015, 806 (02)