An equation of Monge-Ampere type in conformal geometry, and four-manifolds of positive Ricci curvature

被引:193
作者
Chang, SYA [1 ]
Gursky, MJ
Yang, PC
机构
[1] Princeton Univ, Princeton, NJ 08544 USA
[2] Univ Notre Dame, Notre Dame, IN 46556 USA
关键词
D O I
10.2307/3062131
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We formulate natural conformally invariant conditions on a 4-manifold for the existence of a metric whose Schouten tensor satisfies a quadratic inequality. This inequality implies that the eigen-values of the Ricci tensor are positively pinched.
引用
收藏
页码:709 / 787
页数:79
相关论文
共 38 条
[1]   A SHARP INEQUALITY OF MOSER,J. FOR HIGHER-ORDER DERIVATIVES [J].
ADAMS, DR .
ANNALS OF MATHEMATICS, 1988, 128 (02) :385-398
[2]   ESTIMATES NEAR BOUNDARY FOR SOLUTIONS OF ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS SATISFYING GENERAL BOUNDARY CONDITIONS .2. [J].
AGMON, S ;
DOUGLIS, A ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1964, 17 (01) :35-&
[3]  
Besse A., 1987, Einstein manifolds, DOI 10.1007/978-3-540-74311-8
[4]   An anomaly associated with 4-dimensional quantum gravity [J].
Branson, T .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 178 (02) :301-309
[5]   ESTIMATES AND EXTREMALS FOR ZETA-FUNCTION DETERMINANTS ON 4-MANIFOLDS [J].
BRANSON, TP ;
CHANG, SYA ;
YANG, PC .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 149 (02) :241-262
[6]   EXPLICIT FUNCTIONAL DETERMINANTS IN 4 DIMENSIONS [J].
BRANSON, TP ;
ORSTED, B .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 113 (03) :669-682
[7]   THE DIRICHLET PROBLEM FOR NONLINEAR 2ND-ORDER ELLIPTIC-EQUATIONS .1. MONGE-AMPERE EQUATION [J].
CAFFARELLI, L ;
NIRENBERG, L ;
SPRUCK, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1984, 37 (03) :369-402
[8]   THE DIRICHLET PROBLEM FOR NONLINEAR 2ND-ORDER ELLIPTIC-EQUATIONS .2. COMPLEX MONGE-AMPERE, AND UNIFORMLY ELLIPTIC, EQUATIONS [J].
CAFFARELLI, L ;
KOHN, JJ ;
NIRENBERG, L ;
SPRUCK, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1985, 38 (02) :209-252
[9]   THE DIRICHLET PROBLEM FOR NONLINEAR 2ND-ORDER ELLIPTIC-EQUATIONS .3. FUNCTIONS OF THE EIGENVALUES OF THE HESSIAN [J].
CAFFARELLI, L ;
NIRENBERG, L ;
SPRUCK, J .
ACTA MATHEMATICA, 1985, 155 (3-4) :261-301
[10]   EXTREMAL METRICS OF ZETA-FUNCTION DETERMINANTS ON 4-MANIFOLDS [J].
CHANG, SYA ;
YANG, PC .
ANNALS OF MATHEMATICS, 1995, 142 (01) :171-212