On a nonlinear eigenvalue problem in Orlicz-Sobolev spaces

被引:39
作者
Gossez, JP
Manásevich, R
机构
[1] Free Univ Brussels, Dept Math, B-1050 Brussels, Belgium
[2] Univ Chile, Ctr Modelamiento Matemat, Santiago 3, Chile
[3] Univ Chile, Dept Ingn Matemat, Santiago 3, Chile
关键词
D O I
10.1017/S030821050000192X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the eigenvalue problem -Delta(m) (u) = lambdam(u) in Omega, u = 0 on partial derivativeOmega in an arbitrary Orlicz-Sobolev space. We show that the existence of an eigenvalue can be derived from a generalized version of Lagrange multiplier rule. Our approach also applies to more general problems. We emphasize that no Delta(2) condition is imposed.
引用
收藏
页码:891 / 909
页数:19
相关论文
共 12 条
[1]   METRIC REGULARITY, TANGENT SETS, AND 2ND-ORDER OPTIMALITY CONDITIONS [J].
COMINETTI, R .
APPLIED MATHEMATICS AND OPTIMIZATION, 1990, 21 (03) :265-287
[2]  
Dacorogna B., 1989, DIRECT METHODS CALCU
[3]  
Donaldson T.K., 1971, J FUNCT ANAL, V8, P52
[4]  
ELMAHI A, 1997, THESIS U FES
[5]   On principal eigenvalues for quasilinear elliptic differential operators: an Orlicz-Sobolev space setting [J].
Garcia-Huidobro, M. ;
Le, V. K. ;
Manasevich, R. ;
Schmitt, K. .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 1999, 6 (02) :207-225
[6]   NONLINEAR ELLIPTIC BOUNDARY-VALUE PROBLEMS FOR EQUATIONS WITH RAPIDLY (OR SLOWLY) INCREASING COEFFICIENTS [J].
GOSSEZ, JP .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 190 (463) :163-205
[7]  
GOSSEZ JP, 1987, NONLIN ANAL, V11, P373
[8]  
KUBRUSLY R. S., 1990, DIFFER INTEGRAL EQU, V3, P923
[9]   An eigenvalue problem for generalized Laplacian in Orlicz-Sobolev spaces [J].
Mustonen, V ;
Tienari, M .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1999, 129 :153-163
[10]   Ljusternik-Schnirelmann theorem for the generalized laplacian [J].
Tienari, M .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2000, 161 (01) :174-190