The Heat Equaton with General Periodic Boundary Conditions

被引:2
作者
Rodriguez-Bernal, Anibal [1 ,2 ]
机构
[1] Univ Complutense Madrid, Dept Matemat Appl, E-28040 Madrid, Spain
[2] CSIC UAM UC3M UCM, Inst Ciencias Matemat, Madrid, Spain
关键词
Periodic boundary conditions; Heat equation; Smoothing effect; Analytic semigroups; LINEAR PARABOLIC EQUATIONS;
D O I
10.1007/s11118-016-9584-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we address the well posedness of the linear heat equation under general periodic boundary conditions in several settings depending on the properties of the initial data. We develop an L-q theory not based on separation of variables and use techniques based on uniform spaces. We also allow less directions of periodicity than the dimension of the problem. We obtain smoothing estimates on the solutions. Also, based on symmetry arguments, we handle Dirichlet or Neumann boundary conditions in some faces of the unit cell.
引用
收藏
页码:295 / 321
页数:27
相关论文
共 28 条
[1]  
Amann H., 1994, Differ. Integr. Equ, V7, P613
[2]  
[Anonymous], 1970, SINGULAR INTEGRALS D
[3]  
[Anonymous], 1995, ABSTRACT LINEAR THEO
[4]  
[Anonymous], 1988, APPL MATH SCI
[5]   Linear parabolic equations in locally uniform spaces [J].
Arrieta, JM ;
Rodriguez-Bernal, A ;
Cholewa, JW ;
Dlotko, T .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2004, 14 (02) :253-293
[6]  
Bourgain J., 1999, C PUBLICATIONS
[7]   A nonlinear heat equation with singular initial data [J].
Brezis, H ;
Cazenave, T .
JOURNAL D ANALYSE MATHEMATIQUE, 1996, 68 :277-304
[8]   PATTERN-FORMATION OUTSIDE OF EQUILIBRIUM [J].
CROSS, MC ;
HOHENBERG, PC .
REVIEWS OF MODERN PHYSICS, 1993, 65 (03) :851-1112
[9]  
Daners D, 2000, MATH NACHR, V217, P13, DOI 10.1002/1522-2616(200009)217:1<13::AID-MANA13>3.3.CO
[10]  
2-Y