Precise measurement of quantum observables with neural-network estimators

被引:61
作者
Torlai, Giacomo [1 ]
Mazzola, Guglielmo [2 ]
Carleo, Giuseppe [1 ]
Mezzacapo, Antonio [3 ]
机构
[1] Flatiron Inst, Ctr Computat Quantum Phys, New York, NY 10010 USA
[2] IBM Res Zurich, Saumerstr 4, CH-8803 Ruschlikon, Switzerland
[3] IBM TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA
来源
PHYSICAL REVIEW RESEARCH | 2020年 / 2卷 / 02期
关键词
PHASE-TRANSITIONS; SIMULATION; STATES;
D O I
10.1103/PhysRevResearch.2.022060
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The measurement precision of modern quantum simulators is intrinsically constrained by the limited set of measurements that can be efficiently implemented on hardware. This fundamental limitation is particularly severe for quantum algorithms where complex quantum observables are to be precisely evaluated. To achieve precise estimates with current methods, prohibitively large amounts of sample statistics are required in experiments. Here, we propose to reduce the measurement overhead by integrating artificial neural networks with quantum simulation platforms. We show that unsupervised learning of single-qubit data allows the trained networks to accommodate measurements of complex observables, otherwise costly using traditional postprocessing techniques. The effectiveness of this hybrid measurement protocol is demonstrated for quantum chemistry Hamiltonians using both synthetic and experimental data. Neural-network estimators attain high-precision measurements with a drastic reduction in the amount of sample statistics, without requiring additional quantum resources.
引用
收藏
页数:6
相关论文
共 49 条
  • [1] Abraham H., 2019, QISKIT OPEN SOURCE F, DOI DOI 10.5281/ZENODO.2562110
  • [2] ACKLEY DH, 1985, COGNITIVE SCI, V9, P147
  • [3] [Anonymous], ARXIV190806942
  • [4] [Anonymous], ARXIV190713623
  • [5] Focus on quantum tomography
    Banaszek, K.
    Cramer, M.
    Gross, D.
    [J]. NEW JOURNAL OF PHYSICS, 2013, 15
  • [6] Classifying snapshots of the doped Hubbard model with machine learning
    Bohrdt, Annabelle
    Chiu, Christie S.
    Jig, Geoffrey
    Xu, Muqing
    Greif, Daniel
    Greiner, Markus
    Demler, Eugene
    Grusdt, Fabian
    Knap, Michael
    [J]. NATURE PHYSICS, 2019, 15 (09) : 921 - 924
  • [7] Bravyi S., ARXIV170108213
  • [8] Reinforcement Learning in Different Phases of Quantum Control
    Bukov, Marin
    Day, Alexandre G. R.
    Sels, Dries
    Weinberg, Phillip
    Polkovnikov, Anatoli
    Mehta, Pankaj
    [J]. PHYSICAL REVIEW X, 2018, 8 (03):
  • [9] Roads towards fault-tolerant universal quantum computation
    Campbell, Earl T.
    Terhal, Barbara M.
    Vuillot, Christophe
    [J]. NATURE, 2017, 549 (7671) : 172 - 179
  • [10] Machine learning and the physical sciences
    Carleo, Giuseppe
    Cirac, Ignacio
    Cranmer, Kyle
    Daudet, Laurent
    Schuld, Maria
    Tishby, Naftali
    Vogt-Maranto, Leslie
    Zdeborova, Lenka
    [J]. REVIEWS OF MODERN PHYSICS, 2019, 91 (04)