Cavity-Enhanced Single-Photon Source Based on the Silicon-Vacancy Center in Diamond

被引:91
作者
Benedikter, Julia [1 ,2 ]
Kaupp, Hanno [1 ,2 ]
Huemmer, Thomas [1 ,2 ]
Liang, Yuejiang [3 ]
Bommer, Alexander [4 ]
Becher, Christoph [4 ]
Krueger, Anke [3 ]
Smith, Jason M. [5 ]
Haensch, Theodor W. [1 ,2 ]
Hunger, David [1 ,2 ,6 ]
机构
[1] Ludwig Maximilians Univ Munchen, Fak Phys, Schellingstr 4, D-80799 Munich, Germany
[2] Max Planck Inst Quantum Opt, Hans Kopfermann Str 1, D-85748 Garching, Germany
[3] Univ Wurzburg, Inst Organ Chem, D-97074 Wurzburg, Germany
[4] Univ Saarland, Fachrichtung Expt Phys 72, Campus E 2-6, D-66123 Saarbrucken, Germany
[5] Univ Oxford, Dept Mat, 16 Pk Rd, Oxford OX1 3PH, England
[6] Karlsruher Inst Technol, Phys Inst, Wolfgang Gaede Str 1, D-76131 Karlsruhe, Germany
来源
PHYSICAL REVIEW APPLIED | 2017年 / 7卷 / 02期
关键词
SOLID-STATE; OPTICAL MICROCAVITIES; CRYSTAL CAVITY; LIGHT-EMISSION; EMITTERS; NANOPHOTONICS;
D O I
10.1103/PhysRevApplied.7.024031
中图分类号
O59 [应用物理学];
学科分类号
摘要
Single-photon sources are an integral part of various quantum technologies, and solid-state quantum emitters at room temperature appear to be a promising implementation. We couple the fluorescence of individual silicon-vacancy centers in nanodiamonds to a tunable optical microcavity to demonstrate a single-photon source with high efficiency, increased emission rate, and improved spectral purity compared to the intrinsic emitter properties. We use a fiber-based microcavity with a mode volume as small as 3.4 lambda(3) and a quality factor of 1.9 x 10(4) and observe an effective Purcell factor of up to 9.2. Furthermore, we study modifications of the internal rate dynamics and propose a rate model that closely agrees with the measurements. We observe lifetime changes of up to 31%, limited by the finite quantum efficiency of the emitters studied here. With improved materials, our achieved parameters predict single-photon rates beyond 1 GHz.
引用
收藏
页数:12
相关论文
共 51 条
[1]  
Aharonovich I, 2016, NAT PHOTONICS, V10, P631, DOI [10.1038/NPHOTON.2016.186, 10.1038/nphoton.2016.186]
[2]   Coupling of a Single Nitrogen-Vacancy Center in Diamond to a Fiber-Based Microcavity [J].
Albrecht, Roland ;
Bommer, Alexander ;
Deutsch, Christian ;
Reichel, Jakob ;
Becher, Christoph .
PHYSICAL REVIEW LETTERS, 2013, 110 (24)
[3]   Photoluminescence excitation and spectral hole burning spectroscopy of silicon vacancy centers in diamond [J].
Arend, Carsten ;
Becker, Jonas Nils ;
Sternschulte, Hadwig ;
Steinmueller-Nethl, Doris ;
Becher, Christoph .
PHYSICAL REVIEW B, 2016, 94 (04)
[4]   Controlling the dynamics of a coupled atom-cavity system by pure dephasing [J].
Auffeves, A. ;
Gerace, D. ;
Gerard, J. -M. ;
Santos, M. Franca ;
Andreani, L. C. ;
Poizat, J. -P. .
PHYSICAL REVIEW B, 2010, 81 (24)
[5]   Transverse-mode coupling and diffraction loss in tunable Fabry-Perot microcavities [J].
Benedikter, Julia ;
Huemmer, Thomas ;
Mader, Matthias ;
Schlederer, Benedikt ;
Reichel, Jakob ;
Haensch, Theodor W. ;
Hunger, David .
NEW JOURNAL OF PHYSICS, 2015, 17
[6]   Experimental realization of an optical antenna designed for collecting 99% of photons from a quantum emitter [J].
Chu, X. -L. ;
Brenner, T. J. K. ;
Chen, X. -W. ;
Ghosh, Y. ;
Hollingsworth, J. A. ;
Sandoghdar, V. ;
Goetzinger, S. .
OPTICA, 2014, 1 (04) :203-208
[7]   Deterministic Coupling of a Single Nitrogen Vacancy Center to a Photonic Crystal Cavity [J].
Englund, Dirk ;
Shields, Brendan ;
Rivoire, Kelley ;
Hatami, Fariba ;
Vuckovic, Jelena ;
Park, Hongkun ;
Lukin, Mikhail D. .
NANO LETTERS, 2010, 10 (10) :3922-3926
[8]   Coupling of Nitrogen-Vacancy Centers to Photonic Crystal Cavities in Monocrystalline Diamond [J].
Faraon, Andrei ;
Santori, Charles ;
Huang, Zhihong ;
Acosta, Victor M. ;
Beausoleil, Raymond G. .
PHYSICAL REVIEW LETTERS, 2012, 109 (03)
[9]   CHARACTERISTICS AND ORIGIN OF THE 1.681 EV LUMINESCENCE CENTER IN CHEMICAL-VAPOR-DEPOSITED DIAMOND FILMS [J].
FENG, T ;
SCHWARTZ, BD .
JOURNAL OF APPLIED PHYSICS, 1993, 73 (03) :1415-1425
[10]  
Furman S. A., 1992, Basics of Optics of Multilayer Systems