A 1000 fps Vision Chip Based on a Dynamically Reconfigurable Hybrid Architecture Comprising a PE Array Processor and Self-Organizing Map Neural Network

被引:77
作者
Shi, Cong [1 ,2 ]
Yang, Jie [1 ]
Han, Ye [1 ]
Cao, Zhongxiang [1 ]
Qin, Qi [1 ]
Liu, Liyuan [1 ]
Wu, Nan-Jian [1 ]
Wang, Zhihua [2 ,3 ]
机构
[1] Chinese Acad Sci, Inst Semicond, State Key Lab Superlattices & Microstruct, Beijing 100083, Peoples R China
[2] Tsinghua Univ, Dept Elect Engn, Beijing 100084, Peoples R China
[3] Tsinghua Univ, Inst Microelect, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Dynamic reconfiguration; hybrid architecture; multiple levels of parallelism; pattern recognition; processing element (PE); SOM neural network; vision chip; CMOS IMAGE SENSOR; IMPLEMENTATION; SYSTEMS;
D O I
10.1109/JSSC.2014.2332134
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes a vision chip hybrid architecture with dynamically reconfigurable processing element (PE) array processor and self-organizing map (SOM) neural network. It integrates a high speed CMOS image sensor, three von Neumann-type processors, and a non-von Neumann-type bio-inspired SOM neural network. The processors consist of a pixel-parallel PE array processor with O(N x N) parallelism, a row-parallel row-processor (RP) array processor with O(N) parallelism and a thread-parallel dual-core microprocessor unit (MPU) with O(2) parallelism. They execute low-, mid-and high-level image processing, respectively. The SOM network speeds up high-level processing in pattern recognition tasks by O(N/4 x N/4), which improves the chip performance remarkably. The SOM network can be dynamically reconfigured from the PE array to largely save chip area. A prototype chip with a 256 x 256 image sensor, a reconfigurable 64 x 64 PE array processor/16 x 16 SOM network, a 64 x 1 RP array processor and a dual-core 32-bit MPU was implemented in a 0.18 mu m CMOS image sensor process. The chip can perform image capture and various-level image processing at a high speed and in flexible fashion. Various complicated applications including M-S functional solution, horizon estimation, hand gesture recognition, face recognition are demonstrated at high speed from several hundreds to >1000 fps.
引用
收藏
页码:2067 / 2082
页数:16
相关论文
共 39 条
[1]  
Aizawa K, 1999, IEICE T INF SYST, VE82D, P580
[2]   A 3.6 μs Latency Asynchronous Frame-Free Event-Driven Dynamic-Vision-Sensor [J].
Antonio Lenero-Bardallo, Juan ;
Serrano-Gotarredona, Teresa ;
Linares-Barranco, Bernabe .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2011, 46 (06) :1443-1455
[3]  
Cao Z., 2013, P INT IM SENS WORKSH, P229
[4]   i Visual: An Intelligent Visual Sensor SoC With 2790 fps CMOS Image Sensor and 205 GOPS/W Vision Processor [J].
Cheng, Chih-Chi ;
Lin, Chia-Hua ;
Li, Chung-Te ;
Chen, Liang-Gee .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2009, 44 (01) :127-135
[5]   A spatial contrast retina with on-chip calibration for neuromorphic spike-based AER vision systems [J].
Costas-Santos, Jesus ;
Serrano-Gotarredona, Teresa ;
Serrano-Gotarredona, Rafael ;
Linares-Barranco, Bernabe .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2007, 54 (07) :1444-1458
[6]   Real-Time Hand Gesture Detection and Recognition Using Bag-of-Features and Support Vector Machine Techniques [J].
Dardas, Nasser H. ;
Georganas, Nicolas D. .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2011, 60 (11) :3592-3607
[7]   A 10 000 fps CMOS sensor with massively parallel image processing [J].
Dubois, Jerome ;
Ginhac, Dominique ;
Paindavoine, Michel ;
Heyrman, Barthelemy .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2008, 43 (03) :706-717
[8]   A general-purpose processor-per-pixel analog SIMD vision chip [J].
Dudek, P ;
Hicks, PJ .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2005, 52 (01) :13-20
[9]   Image enhancement and denoising by complex diffusion processes [J].
Gilboa, G ;
Sochen, N ;
Zeevi, YY .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2004, 26 (08) :1020-1036
[10]  
Han Y., 2013, J SEMICONDUCTORS, V34, P1