Production of γ-valerolactone from levulinic acid over a Ru/C catalyst using formic acid as the sole hydrogen source

被引:53
作者
Feng Jing [1 ]
Gu Xiaochao [1 ]
Xue Yudan [1 ]
Han Yiwen [1 ]
Lu Xuebin [1 ,2 ]
机构
[1] Tianjin Univ, Sch Environm Sci & Engn, Tianjin 300072, Peoples R China
[2] Tibet Univ, Sch Sci, Dept Chem & Environm Sci, Lhasa 850000, Peoples R China
关键词
gamma-valerolactone; Ru/C catalyst; Triethylamine; Levulinic acid; Formic acid; CONVERSION; CELLULOSE; DECOMPOSITION; GENERATION; HYDROLYSIS;
D O I
10.1016/j.scitotenv.2018.03.209
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Conversion of levulinic acid (LA) to gamma-valerolactone (GVL) over a ruthenium-carbon (Ru/C) catalyst using formic acid (FA) as the sole hydrogen source in cellulose hydrolysis processwas investigated. The reaction was accelerated using Ru(5wt%)/C as the catalyst and by adding triethylamine. The highest LA conversion (87.26%) and GVL yield (80.75%) were obtained using 10 g/mol (LA) catalyst and 150 mL/mol (LA) triethylamine at 160 degrees C for 180 min. In this reaction, the hydrogenation process can only be accomplished in the presence of FA, which is the byproduct of LA production from cellulose hydrolysis. The application of this new route not only improves the economy of the process, but also avoids the energy-costly separation of LA from the LA and FA aqueousmixture. A new reaction pathway for the conversion of LA and FA into GVL over Ru/C with triethylamine was proposed. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:426 / 432
页数:7
相关论文
共 29 条
[1]   PREPARATION AND CHARACTERIZATION OF CHLORINE-FREE RUTHENIUM CATALYSTS AND THE PROMOTER EFFECT IN AMMONIA-SYNTHESIS .3. A MAGNESIA-SUPPORTED RUTHENIUM CATALYST [J].
AIKA, K ;
TAKANO, T ;
MURATA, S .
JOURNAL OF CATALYSIS, 1992, 136 (01) :126-140
[2]   Integrated Catalytic Conversion of γ-Valerolactone to Liquid Alkenes for Transportation Fuels [J].
Bond, Jesse Q. ;
Alonso, David Martin ;
Wang, Dong ;
West, Ryan M. ;
Dumesic, James A. .
SCIENCE, 2010, 327 (5969) :1110-1114
[3]   Small pore zeolite catalysts for furfural synthesis from xylose and switchgrass in a γ-valerolactone/water solvent [J].
Bruce, Spencer M. ;
Zong, Zhaowang ;
Chatzidimitriou, Anargyros ;
Avci, Leyla E. ;
Bond, Jesse Q. ;
Carreon, Moises A. ;
Wettstein, Stephanie G. .
JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL, 2016, 422 :18-22
[4]  
Chen J, 2007, CHINESE J CATAL, V28, P975
[5]   Catalytic Conversion of Biomass-Derived Carbohydrates into γ-Valerolactone without Using an External H2 Supply [J].
Deng, Li ;
Li, Jiang ;
Lai, Da-Ming ;
Fu, Yao ;
Guo, Qing-Xiang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (35) :6529-6532
[6]   Selective Conversion of Levulinic and Formic Acids to γ-Valerolactone with the Shvo Catalyst [J].
Fabos, Viktoria ;
Mika, Laszlo T. ;
Horvath, Istvan T. .
ORGANOMETALLICS, 2014, 33 (01) :181-187
[7]  
Fellay C., 2008, Angew. Chem, V120, P4030, DOI DOI 10.1002/ANGE.200800320
[8]   Selective Formic Acid Decomposition for High-Pressure Hydrogen Generation: A Mechanistic Study [J].
Fellay, Celine ;
Yan, Ning ;
Dyson, Paul J. ;
Laurenczy, Gabor .
CHEMISTRY-A EUROPEAN JOURNAL, 2009, 15 (15) :3752-3760
[9]   A kinetic study of acid catalysed hydrolysis of sugar cane bagasse to levulinic acid [J].
Girisuta, B. ;
Dussan, K. ;
Haverty, D. ;
Leahy, J. J. ;
Hayes, M. H. B. .
CHEMICAL ENGINEERING JOURNAL, 2013, 217 :61-70
[10]   Levulinic Acid Production Using Solid-Acid Catalysis [J].
Guzman, Ilian ;
Heras, Arkaitz ;
Guemez, M. B. ;
Iriondo, Aitziber ;
Cambra, Jose F. ;
Requies, Jesus .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2016, 55 (18) :5139-5144