Artificial intelligence/machine learning in manufacturing and inspection: A GE perspective

被引:40
作者
Aggour, Kareem S. [1 ]
Gupta, Vipul K. [2 ]
Ruscitto, Daniel [3 ]
Ajdelsztajn, Leonardo [2 ]
Bian, Xiao [4 ]
Brosnan, Kristen H. [2 ]
Kumar, Natarajan Chennimalai [5 ]
Dheeradhada, Voramon [2 ]
Hanlon, Timothy [2 ]
Iyer, Naresh [6 ]
Karandikar, Jaydeep [7 ]
Li, Peng [7 ]
Moitra, Abha [1 ]
Reimann, Johan [6 ]
Robinson, Dean M. [8 ]
Santamaria-Pang, Alberto [4 ]
Shen, Chen [2 ]
Soare, Monica A. [2 ]
Sun, Changjie [5 ]
Suzuki, Akane [2 ]
Venkataramana, Raju [9 ]
Vinciguerra, Joseph [10 ]
机构
[1] GE Res, AI Knowledge & Big Data Grp, Niskayuna, NY 12309 USA
[2] GE Res, Struct Mat Grp, Niskayuna, NY USA
[3] GE Res, Mat Characterizat Grp, Niskayuna, NY USA
[4] GE Res, AI & Comp Vis Grp, Niskayuna, NY USA
[5] GE Res, Mech & Design Grp, Niskayuna, NY USA
[6] GE Res, AI & Machine Learning Grp, Niskayuna, NY USA
[7] GE Res, Struct Mat Mfg Grp, Niskayuna, NY USA
[8] GE Res, Addit Mfg Technol Grp, Niskayuna, NY USA
[9] GE Res, Human Comp Interact Grp, Niskayuna, NY USA
[10] GE Res, Addit Platform, Niskayuna, NY USA
关键词
composite; metal; coating; powder metallurgy; optical metallography; PREDICTION; MODELS; LIFE;
D O I
10.1557/mrs.2019.157
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
At GE Research, we are combining physics with artificial intelligence and machine learning to advance manufacturing design, processing, and inspection, turning innovative technologies into real products and solutions across our industrial portfolio. This article provides a snapshot of how this physical plus digital transformation is evolving at GE. © 2019 Materials Research Society.
引用
收藏
页码:545 / 558
页数:14
相关论文
共 50 条
  • [41] Artificial intelligence, machine learning, and deep learning for clinical outcome prediction
    Pettit, Rowland W.
    Fullem, Robert
    Cheng, Chao
    Amos, Christopher I.
    EMERGING TOPICS IN LIFE SCIENCES, 2021, 5 (06) : 729 - 745
  • [43] The use of artificial intelligence, machine learning and deep learning in oncologic histopathology
    Sultan, Ahmed S.
    Elgharib, Mohamed A.
    Tavares, Tiffany
    Jessri, Maryam
    Basile, John R.
    JOURNAL OF ORAL PATHOLOGY & MEDICINE, 2020, 49 (09) : 849 - 856
  • [44] Unleashing the future: The revolutionary role of machine learning and artificial intelligence in drug discovery
    Yadav, Manoj Kumar
    Dahiya, Vandana
    Tripathi, Manish Kumar
    Chaturvedi, Navaneet
    Rashmi, Mayank
    Ghosh, Arabinda
    Raj, V. Samuel
    EUROPEAN JOURNAL OF PHARMACOLOGY, 2024, 985
  • [45] Recent trends and perspectives of artificial intelligence-based machine learning from discovery to manufacturing in biopharmaceutical industry
    Maharjan, Ravi
    Lee, Jae Chul
    Lee, Kyeong
    Han, Hyo-Kyung
    Kim, Ki Hyun
    Jeong, Seong Hoon
    JOURNAL OF PHARMACEUTICAL INVESTIGATION, 2023, 53 (06) : 803 - 826
  • [46] CORR Synthesis: When Should the Orthopaedic Surgeon Use Artificial Intelligence, Machine Learning, and Deep Learning?
    Murphy, Michael P.
    Brown, Nicholas M.
    CLINICAL ORTHOPAEDICS AND RELATED RESEARCH, 2021, 479 (07) : 1497 - 1505
  • [47] Artificial Intelligence and Machine Learning in Dialysis Ready for Prime Time?
    Kotanko, Peter
    Zhang, Hanjie
    Wang, Yuedong
    CLINICAL JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2023, 18 (06): : 803 - 805
  • [48] Artificial Intelligence and Machine Learning for Job Automation: A Review and Integration
    Peng, Gang
    Bhaskar, Rahul
    JOURNAL OF DATABASE MANAGEMENT, 2023, 34 (01)
  • [49] The Role of Artificial Intelligence and Machine Learning in Clinical Cardiac Electrophysiology
    Ng, Ben
    Nayyar, Sachin
    Chauhan, Vijay S.
    CANADIAN JOURNAL OF CARDIOLOGY, 2022, 38 (02) : 246 - 258
  • [50] Digital transformation through advances in artificial intelligence and machine learning
    Malik, Hasmat
    Chaudhary, Gopal
    Srivastava, Smriti
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 42 (02) : 615 - 622