Comparison of Additive and Multiplicative Bayesian Models for Longitudinal Count Data with Overdispersion Parameters: A Simulation Study

被引:4
作者
Aregay, Mehreteab [1 ]
Shkedy, Ziv [2 ]
Molenberghs, Geert [1 ,2 ]
机构
[1] Katholieke Univ Leuven, I BioStat, Leuven, Belgium
[2] Hasselt Univ, I BioStat, B-3590 Diepenbeek, Belgium
关键词
Additive model; Deviance information criteria; Multiplicative model; Overdispersion; RATES;
D O I
10.1080/03610918.2013.781629
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In applied statistical data analysis, overdispersion is a common feature. It can be addressed using both multiplicative and additive random effects. A multiplicative model for count data incorporates a gamma random effect as a multiplicative factor into the mean, whereas an additive model assumes a normally distributed random effect, entered into the linear predictor. Using Bayesian principles, these ideas are applied to longitudinal count data, based on the so-called combined model. The performance of the additive and multiplicative approaches is compared using a simulation study.
引用
收藏
页码:454 / 473
页数:20
相关论文
共 22 条
[1]   A general maximum likelihood analysis of overdispersion in generalized linear models [J].
Aitkin, M .
STATISTICS AND COMPUTING, 1996, 6 (03) :251-262
[2]  
[Anonymous], J ROYAL STAT SOC D
[3]  
[Anonymous], APPLIED STATISTICS
[4]   A hierarchical Bayesian approach for the analysis of longitudinal count data with overdispersion: A simulation study [J].
Aregay, Mehreteab ;
Shkedy, Ziv ;
Molenberghs, Geert .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2013, 57 (01) :233-245
[5]   Negative binomial loglinear mixed models [J].
Booth, JG ;
Casella, G ;
Friedl, H ;
Hobert, JP .
STATISTICAL MODELLING, 2003, 3 (03) :179-191
[6]  
BRILLINGER DR, 1986, BIOMETRICS, V42, P693, DOI 10.2307/2530689
[7]   Quantitative refinements for comparisons of institutional performance [J].
Deely, JJ ;
Smith, AFM .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 1998, 161 :5-12
[8]  
Gelman A., 1992, STAT SCI, V7, P457, DOI [DOI 10.1214/SS/1177011136, 10.1214/ss/1177011136]
[9]   Prior distributions for variance parameters in hierarchical models(Comment on an Article by Browne and Draper) [J].
Gelman, Andrew .
BAYESIAN ANALYSIS, 2006, 1 (03) :515-533
[10]  
Gelman Andrew, 2004, Bayesian data analysis, V2nd