Additive model;
Deviance information criteria;
Multiplicative model;
Overdispersion;
RATES;
D O I:
10.1080/03610918.2013.781629
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
In applied statistical data analysis, overdispersion is a common feature. It can be addressed using both multiplicative and additive random effects. A multiplicative model for count data incorporates a gamma random effect as a multiplicative factor into the mean, whereas an additive model assumes a normally distributed random effect, entered into the linear predictor. Using Bayesian principles, these ideas are applied to longitudinal count data, based on the so-called combined model. The performance of the additive and multiplicative approaches is compared using a simulation study.