A neural implementation of canonical correlation analysis

被引:78
|
作者
Lai, PL [1 ]
Fyfe, C [1 ]
机构
[1] Univ Paisley, Appl Computat Intelligence Res Unit, Dept Comp & Informat Syst, Paisley PA1 2BE, Renfrew, Scotland
关键词
canonical correlation analysis; nonlinear correlations; random dot stereograms;
D O I
10.1016/S0893-6080(99)00075-1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We derive a new method of performing Canonical Correlation Analysis with Artificial Neural Networks. We demonstrate the network's capabilities on artificial data and then compare its effectiveness with that of a standard statistical method on real data. We demonstrate the capabilities of the network in two situations where standard statistical techniques are not effective: where we have correlations stretching over three datasets and where the maximum nonlinear correlation is greater than any linear correlation. The network is also applied to Becker's (Network: Computation in Neural Systems, 1996, 7:7-31) random dot stereogram data and shown to be extremely effective at detecting shift information. (C) 1999 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1391 / 1397
页数:7
相关论文
共 50 条
  • [1] Canonical Correlation Analysis Neural Networks
    Fyfe, C
    Lai, PL
    15TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 2, PROCEEDINGS: PATTERN RECOGNITION AND NEURAL NETWORKS, 2000, : 977 - 980
  • [2] Riemannian-based neural network method for solving canonical correlation analysis
    Zhuo-Cheng Xie
    Ming Wang
    Yu-Hang Wang
    Huan Ren
    Computational and Applied Mathematics, 2025, 44 (5)
  • [3] Longitudinal canonical correlation analysis
    Lee, Seonjoo
    Choi, Jongwoo
    Fang, Zhiqian
    Bowman, F. DuBois
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2023, 72 (03) : 587 - 607
  • [4] Bayesian Canonical Correlation Analysis
    Klami, Arto
    Virtanen, Seppo
    Kaski, Samuel
    JOURNAL OF MACHINE LEARNING RESEARCH, 2013, 14 : 965 - 1003
  • [5] A Survey on Canonical Correlation Analysis
    Yang, Xinghao
    Liu, Weifeng
    Liu, Wei
    Tao, Dacheng
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2021, 33 (06) : 2349 - 2368
  • [6] Sparse canonical correlation analysis
    David R. Hardoon
    John Shawe-Taylor
    Machine Learning, 2011, 83 : 331 - 353
  • [7] Stochastic Canonical Correlation Analysis
    Gao, Chao
    Garber, Dan
    Srebro, Nathan
    Wang, Jialei
    Wang, Weiran
    JOURNAL OF MACHINE LEARNING RESEARCH, 2019, 20
  • [8] Sparse canonical correlation analysis
    Hardoon, David R.
    Shawe-Taylor, John
    MACHINE LEARNING, 2011, 83 (03) : 331 - 353
  • [9] Sufficient Canonical Correlation Analysis
    Guo, Yiwen
    Ding, Xiaoqing
    Liu, Changsong
    Xue, Jing-Hao
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (06) : 2610 - 2619
  • [10] Simultaneous canonical correlation analysis with invariant canonical loadings
    Gu F.
    Wu H.
    Behaviormetrika, 2018, 45 (1) : 111 - 132