PROSTATIC CELLS CLASSIFICATION USING DEEP LEARNING

被引:0
作者
Majercik, Jakub [1 ]
Spacek, Michal [1 ]
机构
[1] FEEC BUT, Bachelor Degree Programme 2, Brno, Czech Republic
来源
PROCEEDINGS II OF THE 26TH CONFERENCE STUDENT EEICT 2020 | 2020年
关键词
cell classification; deep learning; neural network; quantitative phase imaging; microscopy;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Human prostate cancer PC-3 cell line is widely used in cancer research. Previously, Zinc-Resistant variant was described characteristically by higher dry cellular mass determined by quantitative phase imaging. This work aims to classify these 2 cell types into corresponding categories using machine learning methods. We have achieved 97.5% accuracy with the correct preprocessing using Res-Net network.
引用
收藏
页码:28 / 31
页数:4
相关论文
共 4 条
[1]  
[Anonymous], 2009, CVPR09
[2]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[3]   KRAS NF-κB is involved in the development of zinc resistance and reduced curability in prostate cancer [J].
Holubova, Monika ;
Axmanova, Martina ;
Gumulec, Jaromir ;
Raudenska, Martina ;
Sztalmachova, Marketa ;
Babula, Petr ;
Adam, Vojtech ;
Kizek, Rene ;
Masarik, Michal .
METALLOMICS, 2014, 6 (07) :1240-1253
[4]   Amino Acid Profiling of Zinc Resistant Prostate Cancer Cell Lines: Associations With Cancer Progression [J].
Kratochvilova, Monika ;
Raudenska, Martina ;
Heger, Zbynek ;
Richtera, Lukas ;
Cernei, Natalia ;
Adam, Vojtech ;
Babula, Petr ;
Novakova, Marie ;
Masarik, Michal ;
Gumulec, Jaromir .
PROSTATE, 2017, 77 (06) :604-616