Exact location of dopants below the Si(001): H surface from scanning tunneling microscopy and density functional theory

被引:12
作者
Brazdova, Veronika [1 ,2 ,3 ]
Bowler, David R. [1 ,2 ,3 ]
Sinthiptharakoon, Kitiphat [1 ,4 ]
Studer, Philipp [1 ,4 ]
Rahnejat, Adam [1 ,2 ]
Curson, Neil J. [1 ,4 ]
Schofield, Steven R. [1 ,2 ]
Fisher, Andrew J. [1 ,2 ,3 ]
机构
[1] UCL, London Ctr Nanotechnol, 17-19 Gordon St, London WC1H 0AH, England
[2] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England
[3] TYC UCL, Gower St, London WC1E 6BT, England
[4] UCL, Dept Elect & Elect Engn, Torrington Pl, London WC1E 7JE, England
基金
英国工程与自然科学研究理事会;
关键词
SILICON; SPIN; FABRICATION; READOUT; STATES; ATOMS;
D O I
10.1103/PhysRevB.95.075408
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Control of dopants in silicon remains crucial to tailoring the properties of electronic materials for integrated circuits. Silicon is also finding newapplications in coherent quantum devices, as a magnetically quiet environment for impurity orbitals. The ionization energies and shapes of the dopant orbitals depend on the surfaces and interfaces with which they interact. The location of the dopant and local environment effects will therefore determine the functionality of both future quantum information processors and next-generation semiconductor devices. Here we match observed dopant wave functions from scanning tunneling microscopy (STM) to images simulated from first-principles density functional theory (DFT) calculations and precisely determine the substitutional sites of neutral As dopants between 5 and 15 angstrom below the Si(001): H surface. We gain a full understanding of the interaction of the donor state with the surface and the transition between the bulk dopant and the dopants in the surface layer.
引用
收藏
页数:10
相关论文
共 43 条
[31]   Quantum simulation of the Hubbard model with dopant atoms in silicon [J].
Salfi, J. ;
Mol, J. A. ;
Rahman, R. ;
Klimeck, G. ;
Simmons, M. Y. ;
Hollenberg, L. C. L. ;
Rogge, S. .
NATURE COMMUNICATIONS, 2016, 7
[32]  
Salfi J, 2014, NAT MATER, V13, P605, DOI [10.1038/nmat3941, 10.1038/NMAT3941]
[33]   Donor wave functions in Si gauged by STM images [J].
Saraiva, A. L. ;
Salfi, J. ;
Bocquel, J. ;
Voisin, B. ;
Rogge, S. ;
Capaz, Rodrigo B. ;
Calderon, M. J. ;
Koiller, Belita .
PHYSICAL REVIEW B, 2016, 93 (04)
[34]   Atomically precise placement of single dopants in Si [J].
Schofield, SR ;
Curson, NJ ;
Simmons, MY ;
Ruess, FJ ;
Hallam, T ;
Oberbeck, L ;
Clark, RG .
PHYSICAL REVIEW LETTERS, 2003, 91 (13)
[35]   Investigating individual arsenic dopant atoms in silicon using low-temperature scanning tunnelling microscopy [J].
Sinthiptharakoon, Kitiphat ;
Schofield, Steven R. ;
Studer, Philipp ;
Brazdova, Veronika ;
Hirjibehedin, Cyrus F. ;
Bowler, David R. ;
Curson, Neil J. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2014, 26 (01)
[36]   Optically driven silicon-based quantum gates with potential for high-temperature operation [J].
Stoneham, AM ;
Fisher, AJ ;
Greenland, PT .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2003, 15 (27) :L447-L451
[37]   Site-Dependent Ambipolar Charge States Induced by Group V Atoms in a Silicon Surface [J].
Studer, Philipp ;
Brazdova, Veronika ;
Schofield, Steven R. ;
Bowler, David R. ;
Hirjibehedin, Cyrus F. ;
Curson, Neil J. .
ACS NANO, 2012, 6 (12) :10456-10462
[38]   THEORY OF THE SCANNING TUNNELING MICROSCOPE [J].
TERSOFF, J ;
HAMANN, DR .
PHYSICAL REVIEW B, 1985, 31 (02) :805-813
[39]   Prospects for atomically ordered device structures based on STM lithography [J].
Tucker, JR ;
Shen, TC .
SOLID-STATE ELECTRONICS, 1998, 42 (7-8) :1061-1067
[40]  
Usman M, 2016, NAT NANOTECHNOL, V11, P763, DOI [10.1038/nnano.2016.83, 10.1038/NNANO.2016.83]