Breathinglike phonon modes of multiwalled carbon nanotubes

被引:101
作者
Popov, VN
Henrard, L
机构
[1] Univ Antwerp, RUCA, Dept Phys, B-2020 Antwerp, Belgium
[2] Fac Univ Notre Dame Paix, Phys Solide Lab, B-5000 Namur, Belgium
[3] Univ Sofia, Fac Phys, BG-1164 Sofia, Bulgaria
关键词
D O I
10.1103/PhysRevB.65.235415
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The breathinglike phonon modes of multiwalled carbon nanotubes are studied within a valence force field model for nanotubes with two and three layers of armchair type and within a continuum model for nanotubes with a large number of layers. A bond-polarizability model is used to calculate the nonresonant Raman intensity of the breathinglike modes. It is obtained that among all breathinglike modes of a given multiwalled tube, the in-phase one has a maximal intensity. The predicted intensity of the breathinglike modes is compared to available low-frequency experimental Raman data. Special attention is given to the comparison with Raman data on double-walled carbon nanotubes.
引用
收藏
页码:2354151 / 2354156
页数:6
相关论文
共 50 条
  • [21] Raman spectrum study of phonon modes for single-wall carbon nanotubes
    Physics Department, Zhejiang University, Hangzhou 310027, China
    Wuli Xuebao, 2 (277-278):
  • [22] Electron spin relaxation via flexural phonon modes in semiconducting carbon nanotubes
    Borysenko, K. M.
    Semenov, Y. G.
    Kim, K. W.
    Zavada, J. M.
    PHYSICAL REVIEW B, 2008, 77 (20):
  • [23] Manifestation of anharmonicities in terms of phonon modes' energy and lifetime in multiwall carbon nanotubes
    Sharma, Meenu
    Rani, Sonam
    Pathak, Devesh K.
    Bhatia, Ravi
    Kumar, Rajesh
    Sameera, I
    CARBON, 2021, 171 : 568 - 574
  • [24] Significant electron-phonon coupling in nanographene confined in single-walled carbon nanotubes due to the large amplitude of radial breathinglike vibrations
    Wu, Bingze
    Zhu, Mingfeng
    Zhai, Chunguang
    Zhao, Yaping
    Meng, Yexuan
    Dong, Jiajun
    Li, Xuan
    Liu, Ran
    Tang, Kunpeng
    Shi, Lei
    Sundqvist, Bertil
    Yao, Mingguang
    PHYSICAL REVIEW B, 2024, 109 (19)
  • [25] Multishell conduction in multiwalled carbon nanotubes
    Collins, PG
    Avouris, P
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2002, 74 (03): : 329 - 332
  • [26] Tunneling into resistive multiwalled carbon nanotubes
    Tarkiainen, R
    Ahlskog, M
    Roschier, L
    Hakonen, P
    Paalanen, M
    ELECTRONIC CORRELATIONS: FROM MESO- TO NANO-PHYSICS, 2001, : 437 - 442
  • [27] Conductance quantization in multiwalled carbon nanotubes
    Ph. Poncharal
    St. Frank
    Z.L. Wang
    W.A. de Heer
    The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics, 1999, 9 : 77 - 79
  • [28] Multiwalled carbon nanotubes/polystyrene composites
    Bolbukh, Y.U.M.
    Gun'ko, G.S.
    Prikhod'ko, G.P.
    Tertykh, V.A.
    Journal of Nanostructured Polymers and Nanocomposites, 2009, 5 (01): : 14 - 22
  • [29] Functionalization of multiwalled carbon nanotubes with β-lactoglobulin
    Zhou, Jinjin
    Yang, Qiang
    Pan, Xuejun
    Gunasekaran, Sundaram
    NSTI NANOTECH 2008, VOL 1, TECHNICAL PROCEEDINGS: MATERIALS, FABRICATION, PARTICLES, AND CHARACTERIZATION, 2008, : 398 - +
  • [30] Sonochemical oxidation of multiwalled carbon nanotubes
    Xing, YC
    Li, L
    Chusuei, CC
    Hull, RV
    LANGMUIR, 2005, 21 (09) : 4185 - 4190