Simplicial band depth for multivariate functional data

被引:55
作者
Lopez-Pintado, Sara [1 ]
Sun, Ying [2 ]
Lin, Juan K. [3 ]
Genton, Marc G. [4 ]
机构
[1] Columbia Univ, Dept Biostat, New York, NY 10032 USA
[2] Ohio State Univ, Dept Stat, Columbus, OH 43210 USA
[3] SearchForce Inc, San Mateo, CA 94403 USA
[4] King Abdullah Univ Sci & Technol, CEMSE Div, Thuwal 239556900, Saudi Arabia
关键词
Band depth; Functional boxplot; Functional and image data; Modified band depth; Multivariate; Simplicial; CROSS-COVARIANCE FUNCTIONS;
D O I
10.1007/s11634-014-0166-6
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose notions of simplicial band depth for multivariate functional data that extend the univariate functional band depth. The proposed simplicial band depths provide simple and natural criteria to measure the centrality of a trajectory within a sample of curves. Based on these depths, a sample of multivariate curves can be ordered from the center outward and order statistics can be defined. Properties of the proposed depths, such as invariance and consistency, can be established. A simulation study shows the robustness of this new definition of depth and the advantages of using a multivariate depth versus the marginal depths for detecting outliers. Real data examples from growth curves and signature data are used to illustrate the performance and usefulness of the proposed depths.
引用
收藏
页码:321 / 338
页数:18
相关论文
共 50 条
  • [41] Data Imputation for Multivariate Time Series Sensor Data With Large Gaps of Missing Data
    Wu, Rui
    Hamshaw, Scott D.
    Yang, Lei
    Kincaid, Dustin W.
    Etheridge, Randall
    Ghasemkhani, Amir
    IEEE SENSORS JOURNAL, 2022, 22 (11) : 10671 - 10683
  • [42] Band depth analysis of CHRIS/PROBA data for the study of a Mediterranean natural ecosystem. Correlations with leaf optical properties and ecophysiological parameters
    Sykioti, Olga
    Paronis, Dimitris
    Stagakis, Stavros
    Kyparissis, Aris
    REMOTE SENSING OF ENVIRONMENT, 2011, 115 (02) : 752 - 766
  • [43] Nonparametric notions of multivariate "scatter measure" and "more scattered" based on statistical depth functions
    Zuo, YJ
    Serfling, R
    JOURNAL OF MULTIVARIATE ANALYSIS, 2000, 75 (01) : 62 - 78
  • [44] A Decomposition of Total Variation Depth for Understanding Functional Outliers
    Huang, Huang
    Sun, Ying
    TECHNOMETRICS, 2019, 61 (04) : 445 - 458
  • [45] Theory of angular depth for classification of directional data
    Nagy, Stanislav
    Demni, Houyem
    Buttarazzi, Davide
    Porzio, Giovanni C.
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2024, 18 (03) : 627 - 662
  • [46] Interactive Selection of Multivariate Features in Large Saptiotemporal Data
    Wang, Jingyuan
    Sisneros, Robert
    Huang, Jian
    2013 IEEE SYMPOSIUM ON PACIFIC VISUALIZATION (PACIFICVIS), 2013, : 145 - 152
  • [47] Multivariate and Multiscale Data Assimilation in Terrestrial Systems: A Review
    Montzka, Carsten
    Pauwels, Valentijn R. N.
    Franssen, Harrie-Jan Hendricks
    Han, Xujun
    Vereecken, Harry
    SENSORS, 2012, 12 (12) : 16291 - 16333
  • [48] Practical Multivariate Data Correction and Sensor Calibration Methods
    Rodrigues, Luis S.
    Ferreira, Jorge A.
    Silva, Fernando N.
    Martins, Nelson D.
    Marques, Daniel Lemos
    Almeida, Carlos M.
    Molchanov, Viatcheslav
    IEEE SENSORS JOURNAL, 2020, 20 (13) : 7283 - 7291
  • [49] Spatial Multivariate Trees for Big Data Bayesian Regression
    Peruzzi, Michele
    Dunson, David B.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2022, 23
  • [50] Validation of hydrometric data using multivariate filtering techniques
    Bennis, S
    Cote, S
    Kang, N
    CANADIAN JOURNAL OF CIVIL ENGINEERING, 1996, 23 (01) : 218 - 230