Simplicial band depth for multivariate functional data

被引:55
作者
Lopez-Pintado, Sara [1 ]
Sun, Ying [2 ]
Lin, Juan K. [3 ]
Genton, Marc G. [4 ]
机构
[1] Columbia Univ, Dept Biostat, New York, NY 10032 USA
[2] Ohio State Univ, Dept Stat, Columbus, OH 43210 USA
[3] SearchForce Inc, San Mateo, CA 94403 USA
[4] King Abdullah Univ Sci & Technol, CEMSE Div, Thuwal 239556900, Saudi Arabia
关键词
Band depth; Functional boxplot; Functional and image data; Modified band depth; Multivariate; Simplicial; CROSS-COVARIANCE FUNCTIONS;
D O I
10.1007/s11634-014-0166-6
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose notions of simplicial band depth for multivariate functional data that extend the univariate functional band depth. The proposed simplicial band depths provide simple and natural criteria to measure the centrality of a trajectory within a sample of curves. Based on these depths, a sample of multivariate curves can be ordered from the center outward and order statistics can be defined. Properties of the proposed depths, such as invariance and consistency, can be established. A simulation study shows the robustness of this new definition of depth and the advantages of using a multivariate depth versus the marginal depths for detecting outliers. Real data examples from growth curves and signature data are used to illustrate the performance and usefulness of the proposed depths.
引用
收藏
页码:321 / 338
页数:18
相关论文
共 50 条
  • [21] Exploratory functional data analysis
    Qu, Zhuo
    Dai, Wenlin
    Euan, Carolina
    Sun, Ying
    Genton, Marc G.
    TEST, 2024,
  • [22] Depth for Curve Data and Applications
    de Micheaux, Pierre Lafaye
    Mozharovskyi, Pavlo
    Vimond, Myriam
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2021, 116 (536) : 1881 - 1897
  • [23] Lens data depth and median
    Liu, Zhenyu
    Modarres, Reza
    JOURNAL OF NONPARAMETRIC STATISTICS, 2011, 23 (04) : 1063 - 1074
  • [24] Multivariate data fitting with error control
    Annie Cuyt
    Oliver Salazar Celis
    BIT Numerical Mathematics, 2019, 59 : 35 - 55
  • [25] Multivariate data fitting with error control
    Cuyt, Annie
    Celis, Oliver Salazar
    BIT NUMERICAL MATHEMATICS, 2019, 59 (01) : 35 - 55
  • [26] Multivariate Statistical Analyses for Neuroimaging Data
    McIntosh, Anthony R.
    Misic, Bratislav
    ANNUAL REVIEW OF PSYCHOLOGY, VOL 64, 2013, 64 : 499 - +
  • [27] Multivariate Adaptive Regression Splines Application for Multivariate Geotechnical Problems with Big Data
    Zhang W.
    Goh A.T.C.
    Zhang Y.
    Geotechnical and Geological Engineering, 2016, 34 (1) : 193 - 204
  • [28] Nonparametric analysis of directional data based on data depth
    Agostinelli, C.
    Romanazzi, M.
    ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2013, 20 (02) : 253 - 270
  • [29] MULTIVARIATE APPROACH TO STUDYING THE EFFECTS OF SUBCONCUSSION ON FUNCTIONAL CONNECTIVITY
    Reynolds, Bryson
    Stanton, Amanda
    Soldozy, Sauson
    Goodkin, Howard
    Wintermark, Max
    Druzgal, Jason
    JOURNAL OF NEUROTRAUMA, 2017, 34 (13) : A112 - A112
  • [30] A numerical study of multiple imputation methods using nonparametric multivariate outlier identifiers and depth-based performance criteria with clinical laboratory data
    Dang, Xin
    Serfling, Robert
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2011, 81 (05) : 547 - 560