Simplicial band depth for multivariate functional data

被引:55
作者
Lopez-Pintado, Sara [1 ]
Sun, Ying [2 ]
Lin, Juan K. [3 ]
Genton, Marc G. [4 ]
机构
[1] Columbia Univ, Dept Biostat, New York, NY 10032 USA
[2] Ohio State Univ, Dept Stat, Columbus, OH 43210 USA
[3] SearchForce Inc, San Mateo, CA 94403 USA
[4] King Abdullah Univ Sci & Technol, CEMSE Div, Thuwal 239556900, Saudi Arabia
关键词
Band depth; Functional boxplot; Functional and image data; Modified band depth; Multivariate; Simplicial; CROSS-COVARIANCE FUNCTIONS;
D O I
10.1007/s11634-014-0166-6
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose notions of simplicial band depth for multivariate functional data that extend the univariate functional band depth. The proposed simplicial band depths provide simple and natural criteria to measure the centrality of a trajectory within a sample of curves. Based on these depths, a sample of multivariate curves can be ordered from the center outward and order statistics can be defined. Properties of the proposed depths, such as invariance and consistency, can be established. A simulation study shows the robustness of this new definition of depth and the advantages of using a multivariate depth versus the marginal depths for detecting outliers. Real data examples from growth curves and signature data are used to illustrate the performance and usefulness of the proposed depths.
引用
收藏
页码:321 / 338
页数:18
相关论文
共 50 条
  • [1] Simplicial band depth for multivariate functional data
    Sara López-Pintado
    Ying Sun
    Juan K. Lin
    Marc G. Genton
    Advances in Data Analysis and Classification, 2014, 8 : 321 - 338
  • [2] Pointwise data depth for univariate and multivariate functional outlier detection
    Jimenez-Varon, Cristian F.
    Harrou, Fouzi
    Sun, Ying
    ENVIRONMETRICS, 2024, 35 (05)
  • [3] Band depth based initialization of K-means for functional data clustering
    Javier Albert-Smet
    Aurora Torrente
    Juan Romo
    Advances in Data Analysis and Classification, 2023, 17 : 463 - 484
  • [4] Band depth based initialization of K-means for functional data clustering
    Albert-Smet, Javier
    Torrente, Aurora
    Romo, Juan
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2023, 17 (02) : 463 - 484
  • [5] Robust template estimation for functional data with phase variability using band depth
    Cleveland, Jason
    Zhao, Weilong
    Wu, Wei
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2018, 125 : 10 - 26
  • [6] On the Concept of Depth for Functional Data
    Lopez-Pintado, Sara
    Romo, Juan
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2009, 104 (486) : 718 - 734
  • [7] Directional outlyingness for multivariate functional data
    Dai, Wenlin
    Genton, Marc G.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2019, 131 : 50 - 65
  • [8] A notion of depth for sparse functional data
    Carlo Sguera
    Sara López-Pintado
    TEST, 2021, 30 : 630 - 649
  • [9] A notion of depth for sparse functional data
    Sguera, Carlo
    Lopez-Pintado, Sara
    TEST, 2021, 30 (03) : 630 - 649
  • [10] Exact fast computation of band depth for large functional datasets: How quickly can one million curves be ranked?
    Sun, Ying
    Genton, Marc G.
    Nychka, Douglas W.
    STAT, 2012, 1 (01): : 68 - 74