Superconductivity in twisted multilayer graphene: A smoking gun in recent condensed matter physics*

被引:10
作者
Chu, Yonghuan [1 ]
Zhu, Fangduo [1 ]
Wen, Lingzhi [1 ]
Chen, Wanying [1 ]
Chen, Qiaoni [1 ]
Ma, Tianxing [1 ]
机构
[1] Beijing Normal Univ, Dept Phys, Beijing 100875, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
graphene; twisted multilayer graphene; superconductivity; CORRELATED STATES; TRILAYER GRAPHENE; DIRAC FERMIONS; MOTT INSULATOR; BILAYER; STACKING; GRAPHITE; FIELD; GAP;
D O I
10.1088/1674-1056/abbbea
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We review the recent discoveries of exotic phenomena in graphene, especially superconductivity. It has been theoretically suggested for more than one decade that superconductivity may emerge in doped graphene-based materials. For single-layer pristine graphene, there are theoretical predictions that spin-singlet d + id pairing superconductivity is present when the filling is around the Dirac point. If the Fermi level is doped to the Van Hove singularity where the density of states diverges, then unconventional superconductivity with other pairing symmetry would appear. However, the experimental perspective was a bit disappointing. Despite extensive experimental efforts, superconductivity was not found in monolayer graphene. Recently, unconventional superconductivity was found in magic-angle twisted bilayer graphene. Superconductivity was also found in ABC stacked trilayer graphene and other systems. In this article, we review the unique properties of superconducting states in graphene, experimentally controlling the superconductivity in twisted bilayer graphene, as well as a gate-tunable Mott insulator, and the superconductivity in trilayer graphene. These discoveries have attracted the attention of a large number of physicists. The study of the electronic correlated states in twisted multilayer graphene serves as a smoking gun in recent condensed matter physics.
引用
收藏
页数:8
相关论文
共 147 条
[1]   Screening effect and impurity scattering in monolayer graphene [J].
Ando, Tsuneya .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2006, 75 (07)
[2]   Dependence of band structures on stacking and field in layered graphene [J].
Aoki, Masato ;
Amawashi, Hiroshi .
SOLID STATE COMMUNICATIONS, 2007, 142 (03) :123-127
[3]   Superconductivity in metallic twisted bilayer graphene stabilized by WSe2 [J].
Arora, Harpreet Singh ;
Polski, Robert ;
Zhang, Yiran ;
Thomson, Alex ;
Choi, Youngjoon ;
Kim, Hyunjin ;
Lin, Zhong ;
Wilson, Ilham Zaky ;
Xu, Xiaodong ;
Chu, Jiun-Haw ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Alicea, Jason ;
Nadj-Perge, Stevan .
NATURE, 2020, 583 (7816) :379-+
[4]   Electric-field control of the band gap and Fermi energy in graphene multilayers by top and back gates [J].
Avetisyan, A. A. ;
Partoens, B. ;
Peeters, F. M. .
PHYSICAL REVIEW B, 2009, 80 (19)
[5]   Electric field tuning of the band gap in graphene multilayers [J].
Avetisyan, A. A. ;
Partoens, B. ;
Peeters, F. M. .
PHYSICAL REVIEW B, 2009, 79 (03)
[6]  
Bao W, 2011, NAT PHYS, V7, P948, DOI [10.1038/nphys2103, 10.1038/NPHYS2103]
[7]   Resonating-valence-bond contribution to superconductivity in MgB2 -: art. no. 212505 [J].
Baskaran, G .
PHYSICAL REVIEW B, 2002, 65 (21) :1-4
[8]   Chiral d-wave superconductivity in doped graphene [J].
Black-Schaffer, Annica M. ;
Honerkamp, Carsten .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2014, 26 (42)
[9]   Resonating valence bonds and mean-field d-wave superconductivity in graphite [J].
Black-Schaffer, Annica M. ;
Doniach, Sebastian .
PHYSICAL REVIEW B, 2007, 75 (13)
[10]   Temperature-dependent transport in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Hone, J. ;
Stormer, H. L. ;
Kim, P. .
PHYSICAL REVIEW LETTERS, 2008, 101 (09)