Comparative study of CW, nanosecond- and femtosecond-pulsed laser microcutting of AZ31 magnesium alloy stents

被引:27
作者
Demir, Ali Goekhan [1 ]
Previtali, Barbara [1 ]
机构
[1] Politecn Milan, Dept Mech Engn, I-20156 Milan, Italy
关键词
CARDIOVASCULAR STENT; CORONARY-ARTERIES; TUBES;
D O I
10.1116/1.4866589
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Magnesium alloys constitute an interesting solution for cardiovascular stents due to their biocompatibility and biodegradability in human body. Laser microcutting is the industrially accepted method for stent manufacturing. However, the laser-material interaction should be well investigated to control the quality characteristics of the microcutting process that concern the surface roughness, chemical composition, and microstructure of the final device. Despite the recent developments in industrial laser systems, a universal laser source that can be manipulated flexibly in terms of process parameters is far from reality. Therefore, comparative studies are required to demonstrate processing capabilities. In particular, the laser pulse duration is a key factor determining the processing regime. This work approaches the laser microcutting of AZ31 Mg alloy from the perspective of a comparative study to evaluate the machining capabilities in continuous wave (CW), ns- and fs-pulsed regimes. Three industrial grade machining systems were compared to reach a benchmark in machining quality, productivity, and ease of postprocessing. The results confirmed that moving toward the ultrashort pulse domain the machining quality increases, but the need for postprocessing remains. The real advantage of ultrashort pulsed machining was the ease in postprocessing and maintaining geometrical integrity of the stent mesh after chemical etching. Resultantly, the overall production cycle time was shortest for fs-pulsed laser system, despite the fact that CW laser system provided highest cutting speed. (C) 2014 American Vacuum Society.
引用
收藏
页数:10
相关论文
共 32 条
[1]   Corrosion behaviour of AZ31 magnesium alloy with different grain sizes in simulated biological fluids [J].
Alvarez-Lopez, M. ;
Dolores Pereda, Maria ;
del Valle, J. A. ;
Fernandez-Lorenzo, M. ;
Garcia-Alonso, M. C. ;
Ruano, O. A. ;
Escudero, M. L. .
ACTA BIOMATERIALIA, 2010, 6 (05) :1763-1771
[2]   Fiber laser micro-cutting of stainless steel sheets [J].
Baumeister, M. ;
Dickmann, K. ;
Hoult, T. .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2006, 85 (02) :121-124
[3]   A review of ultrafast laser materials micromachining [J].
Cheng, Jian ;
Liu, Chang-sheng ;
Shang, Shuo ;
Liu, Dun ;
Perrie, Walter ;
Dearden, Geoff ;
Watkins, Ken .
OPTICS AND LASER TECHNOLOGY, 2013, 46 :88-102
[4]  
Chichkov BN, 1996, APPL PHYS A-MATER, V63, P109, DOI 10.1007/BF01567637
[5]  
Demir A. G., INT J COMPUT INTEGR
[6]   Fibre Laser Cutting and Chemical Etching of AZ31 for Manufacturing Biodegradable Stents [J].
Demir, Ali Goekhan ;
Previtali, Barbara ;
Biffi, Carlo Alberto .
ADVANCES IN MATERIALS SCIENCE AND ENGINEERING, 2013, 2013
[7]   Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents:: a prospective, non-randomised multicentre trial [J].
Erbel, Raimund ;
Di Mario, Carlo ;
Bartunek, Jozef ;
Bonnier, Johann ;
de Bruyne, Bernard ;
Eberli, Franz R. ;
Erne, Paul ;
Haude, Michael ;
Heublein, Bernd ;
Horrigan, Mark ;
Ilsley, Charles ;
Boese, Dirk ;
Koolen, Jacques ;
Luescher, Thomas F. ;
Weissman, Neil ;
Waksman, Ron .
LANCET, 2007, 369 (9576) :1869-1875
[8]   Surface Modification of Absorbable Magnesium Stents by Reactive Ion Etching [J].
Galvin, E. ;
Morshed, M. M. ;
Cummins, C. ;
Daniels, S. ;
Lally, C. ;
MacDonald, B. .
PLASMA CHEMISTRY AND PLASMA PROCESSING, 2013, 33 (06) :1137-1152
[9]   The processing of ultrafine-grained Mg tubes for biodegradable stents [J].
Ge, Qiang ;
Dellasega, David ;
Demir, Ali Goekhan ;
Vedani, Maurizio .
ACTA BIOMATERIALIA, 2013, 9 (10) :8604-8610
[10]   Blood triggered corrosion of magnesium alloys [J].
Geis-Gerstorfer, J. ;
Schille, Ch. ;
Schweizer, E. ;
Rupp, F. ;
Scheideler, L. ;
Reichel, H. -P. ;
Hort, N. ;
Nolte, A. ;
Wendel, H. -P. .
MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2011, 176 (20) :1761-1766