On the mean speed of convergence of empirical and occupation measures in Wasserstein distance

被引:61
作者
Boissard, Emmanuel [1 ]
Le Gouic, Thibaut [1 ]
机构
[1] Univ Toulouse 3, Inst Math Toulouse, CNRS UMR 5219, F-31062 Toulouse, France
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2014年 / 50卷 / 02期
关键词
Wasserstein metrics; Optimal transportation; Functional quantization; Transportation inequalities; Markov chains; Measure theory; SMALL BALL PROBABILITIES; TRANSPORTATION COST; FUNCTIONAL QUANTIZATION; SHARP ASYMPTOTICS; METRIC ENTROPY; INEQUALITIES; RATES;
D O I
10.1214/12-AIHP517
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this work, we provide non-asymptotic bounds for the average speed of convergence of the empirical measure in the law of large numbers, in Wasserstein distance. We also consider occupation measures of ergodic Markov chains. One motivation is the approximation of a probability measure by finitely supported measures (the quantization problem). It is found that rates for empirical or occupation measures match or are close to previously known optimal quantization rates in several cases. This is notably highlighted in the example of infinite-dimensional Gaussian measures.
引用
收藏
页码:539 / 563
页数:25
相关论文
共 32 条
  • [1] ON OPTIMAL MATCHINGS
    AJTAI, M
    KOMLOS, J
    TUSNADY, G
    [J]. COMBINATORICA, 1984, 4 (04) : 259 - 264
  • [2] [Anonymous], 2000, LECT NOTES MATH, DOI DOI 10.1007/BFB0103945
  • [3] Barthe F., 2011, PREPRINT
  • [4] Hypercontractivity of Hamilton-Jacobi equations
    Bobkov, SG
    Gentil, I
    Ledoux, M
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2001, 80 (07): : 669 - 696
  • [5] Simple bounds for convergence of empirical and occupation measures in 1-Wasserstein distance
    Boissard, Emmanuel
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2011, 16 : 2296 - 2333
  • [6] Bolley F, 2005, ANN FAC SCI TOULOUSE, V14, P331, DOI 10.5802/afst.1095
  • [7] Quantitative concentration inequalities for empirical measures on non-compact spaces
    Bolley, Francois
    Guillin, Arnaud
    Villani, Cedric
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2007, 137 (3-4) : 541 - 593
  • [8] Cattiaux P., 2011, PREPRINT
  • [9] Central limit theorems for the Wasserstein distance between the empirical and the true distributions
    Del Barrio, E
    Giné, E
    Matrán, C
    [J]. ANNALS OF PROBABILITY, 1999, 27 (02) : 1009 - 1071
  • [10] On the link between small ball probabilities and the quantization problem for Gaussian measures on Banach spaces
    Dereich, S
    Fehringer, F
    Matoussi, A
    Scheutzow, M
    [J]. JOURNAL OF THEORETICAL PROBABILITY, 2003, 16 (01) : 249 - 265