A New Tight Upper Bound on the Entropy of Sums

被引:4
作者
Fahs, Jihad [1 ]
Abou-Faycal, Ibrahim [1 ]
机构
[1] Amer Univ Beirut, Dept Elect & Comp Engn, Beirut 11072020, Lebanon
关键词
entropy of sums; upper bound; infinite variance; infinitely divisible; differential entropy; INEQUALITY; CAPACITY;
D O I
10.3390/e17127881
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the independent sum of a given random variable with a Gaussian variable and an infinitely divisible one. We find a novel tight upper bound on the entropy of the sum which still holds when the variable possibly has an infinite second moment. The proven bound has several implications on both information theoretic problems and infinitely divisible noise channels' transmission rates.
引用
收藏
页码:8312 / 8324
页数:13
相关论文
共 23 条
[1]  
[Anonymous], 1968, INFORM THEORY STAT
[2]   THE CONVOLUTION INEQUALITY FOR ENTROPY POWERS [J].
BLACHMAN, NM .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1965, 11 (02) :267-271
[3]  
Bobkov S. G., 2013, Springer Proceedings in Mathematics & Statistics)., V42, P61
[4]   Entropy Power Inequality for the Renyi Entropy [J].
Bobkov, Sergey G. ;
Chistyakov, Gennadiy P. .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (02) :708-714
[5]   A NEW ENTROPY POWER INEQUALITY [J].
COSTA, MHM .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1985, 31 (06) :751-760
[6]  
Cover Thomas M., 2006, Elements of Information Theory, V2nd
[7]   ON THE MAXIMUM-ENTROPY OF THE SUM OF 2 DEPENDENT RANDOM-VARIABLES [J].
COVER, TM ;
ZHEN, Z .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1994, 40 (04) :1244-1246
[8]   INFORMATION THEORETIC INEQUALITIES [J].
DEMBO, A ;
COVER, TM ;
THOMAS, JA .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1991, 37 (06) :1501-1518
[9]   On the Finiteness of the Capacity of Continuous Channels [J].
Fahs, Jihad ;
Abou-Faycal, Ibrahim .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2016, 64 (01) :166-173
[10]   Using Hermite Bases in Studying Capacity-Achieving Distributions Over AWGN Channels [J].
Fahs, Jihad J. ;
Abou-Faycal, Ibrahim C. .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2012, 58 (08) :5302-5322