Linear-response time-dependent density-functional theory with pairing fields

被引:36
作者
Peng, Degao [1 ]
van Aggelen, Helen [1 ,2 ]
Yang, Yang [1 ]
Yang, Weitao [1 ,3 ]
机构
[1] Duke Univ, Dept Chem, Durham, NC 27708 USA
[2] Univ Ghent, Dept Inorgan & Phys Chem, B-9000 Ghent, Belgium
[3] Duke Univ, Dept Phys, Durham, NC 27708 USA
基金
美国国家科学基金会;
关键词
AUGER SPECTRUM; EXCITED-STATES; APPROXIMATION;
D O I
10.1063/1.4867540
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Recent development in particle-particle random phase approximation (pp-RPA) broadens the perspective on ground state correlation energies [H. van Aggelen, Y. Yang, and W. Yang, Phys. Rev. A 88, 030501 (2013), Y. Yang, H. van Aggelen, S. N. Steinmann, D. Peng, and W. Yang, J. Chem. Phys. 139, 174110 (2013); D. Peng, S. N. Steinmann, H. van Aggelen, and W. Yang, J. Chem. Phys. 139, 104112 (2013)] and N +/- 2 excitation energies [Y. Yang, H. van Aggelen, andW. Yang, J. Chem. Phys. 139, 224105 (2013)]. So far Hartree-Fock and approximated density-functional orbitals have been utilized to evaluate the pp-RPA equation. In this paper, to further explore the fundamentals and the potential use of pairing matrix dependent functionals, we present the linear-response time-dependent density-functional theory with pairing fields with both adiabatic and frequency-dependent kernels. This theory is related to the density-functional theory and time-dependent density-functional theory for superconductors, but is applied to normal non-superconducting systems for our purpose. Due to the lack of the proof of the one-to-one mapping between the pairing matrix and the pairing field for time-dependent systems, the linear-response theory is established based on the representability assumption of the pairing matrix. The linear response theory justifies the use of approximated density-functionals in the pp-RPA equation. This work sets the fundamentals for future density-functional development to enhance the description of ground state correlation energies and N +/- 2 excitation energies. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:10
相关论文
共 56 条
[1]  
[Anonymous], 2003, Generalized Inverses. Theory and Applications, DOI [DOI 10.1007/B97366, 10.1007/b97366]
[2]  
Blaizot J.-P., 1986, Quantum Theory of Finite Systems
[3]   Particle-particle random-phase approximation applied to beryllium isotopes [J].
Blanchon, G. ;
Mau, N. Vinh ;
Bonaccorso, A. ;
Dupuis, M. ;
Pillet, N. .
PHYSICAL REVIEW C, 2010, 82 (03)
[4]  
Capelle K, 1997, INT J QUANTUM CHEM, V61, P325, DOI 10.1002/(SICI)1097-461X(1997)61:2<325::AID-QUA15>3.0.CO
[5]  
2-A
[6]  
Casida M., 1995, RECENT ADV DENSITY F RECENT ADV DENSITY F, DOI [10.1142/9789812830586, DOI 10.1142/9789812830586]
[7]  
Casida ME, 2009, J MOL STRUC-THEOCHEM, V914, P3, DOI 10.1016/j.theochem.2009.08.018
[8]   LINEARIZED MANY-BODY PROBLEM [J].
FUKUDA, N ;
SAWADA, K ;
IWAMOTO, F .
PHYSICAL REVIEW, 1964, 135 (4A) :A932-+
[9]   Fluctuation-dissipation theorem density-functional theory [J].
Furche, F ;
Van Voorhis, T .
JOURNAL OF CHEMICAL PHYSICS, 2005, 122 (16)
[10]   Electron affinities and ionisation potentials for atoms via 'benchmark' tdDFT calculations with and without exchange kernels (vol 138, 014109, 2013) [J].
Gould, Tim ;
Dobson, John F. .
JOURNAL OF CHEMICAL PHYSICS, 2013, 139 (17)