RICCI SOLITON AND RICCI ALMOST SOLITON WITHIN THE FRAMEWORK OF KENMOTSU MANIFOLD

被引:28
作者
Ghosh, A. [1 ]
机构
[1] Chandernagore Coll, Dept Math, Hooghly 712136, India
关键词
Kenmotsu manifold; Ricci almost soliton; warped product; CONTACT; COMPACT;
D O I
10.15330/cmp.11.1.59-69
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
First, we prove that if the Reeb vector field zeta of a Kenmotsu manifold M leaves the Ricci operator Q invariant, then M is Einstein. Next, we study Kenmotsu manifold whose metric represents a Ricci soliton and prove that it is expanding. Moreover, the soliton is trivial (Einstein) if either (i) V is a contact vector field, or (ii) the Reeb vector field zeta leaves the scalar curvature invariant. Finally, it is shown that if the metric of a Kenmotsu manifold represents a gradient Ricci almost soliton, then it is eta-Einstein and the soliton is expanding. We also exhibited some examples of Kenmotsu manifold that admit Ricci almost solitons.
引用
收藏
页码:59 / 69
页数:11
相关论文
共 19 条
  • [1] Generalized Sasakian-space-forms
    Alegre, P
    Blair, DE
    Carriazo, A
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2004, 141 (1) : 157 - 183
  • [2] Generalized Sasakian Space Forms and Conformal Changes of the Metric
    Alegre, Pablo
    Carriazo, Alfonso
    [J]. RESULTS IN MATHEMATICS, 2011, 59 (3-4) : 485 - 493
  • [3] [Anonymous], 1988, Contemp Math, DOI DOI 10.1090/CONM/071/954419
  • [4] Compact almost Ricci solitons with constant scalar curvature are gradient
    Barros, A.
    Batista, R.
    Ribeiro, E., Jr.
    [J]. MONATSHEFTE FUR MATHEMATIK, 2014, 174 (01): : 29 - 39
  • [5] SOME CHARACTERIZATIONS FOR COMPACT ALMOST RICCI SOLITONS
    Barros, A.
    Ribeiro, E., Jr.
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (03) : 1033 - 1040
  • [6] Reeb flow symmetry on almost contact three-manifolds
    Cho, Jong Taek
    Kimura, Makoto
    [J]. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2014, 35 : 266 - 273
  • [7] Chow B., 2004, Mathematical Surveys and Monographs, V110
  • [8] Derdzinski A, 2017, PREPRINT
  • [9] NONLINEAR MODELS IN 2 + EPSILON-DIMENSIONS
    FRIEDAN, DH
    [J]. ANNALS OF PHYSICS, 1985, 163 (02) : 318 - 419
  • [10] An η-Einstein Kenmotsu metric as a Ricci soliton
    Ghosh, Amalendu
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 2013, 82 (3-4): : 591 - 598