RICCI SOLITON AND RICCI ALMOST SOLITON WITHIN THE FRAMEWORK OF KENMOTSU MANIFOLD

被引:34
作者
Ghosh, A. [1 ]
机构
[1] Chandernagore Coll, Dept Math, Hooghly 712136, India
关键词
Kenmotsu manifold; Ricci almost soliton; warped product; CONTACT; COMPACT;
D O I
10.15330/cmp.11.1.59-69
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
First, we prove that if the Reeb vector field zeta of a Kenmotsu manifold M leaves the Ricci operator Q invariant, then M is Einstein. Next, we study Kenmotsu manifold whose metric represents a Ricci soliton and prove that it is expanding. Moreover, the soliton is trivial (Einstein) if either (i) V is a contact vector field, or (ii) the Reeb vector field zeta leaves the scalar curvature invariant. Finally, it is shown that if the metric of a Kenmotsu manifold represents a gradient Ricci almost soliton, then it is eta-Einstein and the soliton is expanding. We also exhibited some examples of Kenmotsu manifold that admit Ricci almost solitons.
引用
收藏
页码:59 / 69
页数:11
相关论文
共 19 条
[1]   Generalized Sasakian-space-forms [J].
Alegre, P ;
Blair, DE ;
Carriazo, A .
ISRAEL JOURNAL OF MATHEMATICS, 2004, 141 (1) :157-183
[2]   Generalized Sasakian Space Forms and Conformal Changes of the Metric [J].
Alegre, Pablo ;
Carriazo, Alfonso .
RESULTS IN MATHEMATICS, 2011, 59 (3-4) :485-493
[3]  
[Anonymous], 1988, Contemp Math, DOI DOI 10.1090/CONM/071/954419
[4]   Compact almost Ricci solitons with constant scalar curvature are gradient [J].
Barros, A. ;
Batista, R. ;
Ribeiro, E., Jr. .
MONATSHEFTE FUR MATHEMATIK, 2014, 174 (01) :29-39
[5]   SOME CHARACTERIZATIONS FOR COMPACT ALMOST RICCI SOLITONS [J].
Barros, A. ;
Ribeiro, E., Jr. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (03) :1033-1040
[6]   Reeb flow symmetry on almost contact three-manifolds [J].
Cho, Jong Taek ;
Kimura, Makoto .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2014, 35 :266-273
[7]  
Chow B., 2004, Mathematical Surveys and Monographs, V110
[8]  
Derdzinski A, 2017, PREPRINT
[9]   NONLINEAR MODELS IN 2 + EPSILON-DIMENSIONS [J].
FRIEDAN, DH .
ANNALS OF PHYSICS, 1985, 163 (02) :318-419
[10]   An η-Einstein Kenmotsu metric as a Ricci soliton [J].
Ghosh, Amalendu .
PUBLICATIONES MATHEMATICAE-DEBRECEN, 2013, 82 (3-4) :591-598