Sequentially-coupled space-time FSI analysis of bio-inspired flapping-wing aerodynamics of an MAV

被引:86
作者
Takizawa, Kenji [1 ,2 ]
Tezduyar, Tayfun E. [3 ]
Kostov, Nikolay [3 ]
机构
[1] Waseda Univ, Dept Modern Mech Engn, Shinjuku Ku, Tokyo 1698050, Japan
[2] Waseda Univ, Waseda Inst Adv Study, Shinjuku Ku, Tokyo 1698050, Japan
[3] Rice Univ, Houston, TX 77005 USA
关键词
Micro aerial vehicle; Bio-inspired flapping; Locust; Fluid-structure interaction; Space-time techniques; NURBS; Sequential coupling; FLUID-STRUCTURE-INTERACTION; FINITE-ELEMENT COMPUTATIONS; INCOMPRESSIBLE-FLOW COMPUTATIONS; MODIFIED GEOMETRIC POROSITY; LARGE-EDDY SIMULATION; MOVING BOUNDARIES; ISOGEOMETRIC ANALYSIS; RINGSAIL PARACHUTES; TURBINE ROTORS; 3D SIMULATION;
D O I
10.1007/s00466-014-0980-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a sequentially-coupled space-time (ST) computational fluid-structure interaction (FSI) analysis of flapping-wing aerodynamics of a micro aerial vehicle (MAV). The wing motion and deformation data, whether prescribed fully or partially, is from an actual locust, extracted from high-speed, multi-camera video recordings of the locust in a wind tunnel. The core computational FSI technology is based on the Deforming-Spatial-Domain/Stabilized ST (DSD/SST) formulation. This is supplemented with using NURBS basis functions in temporal representation of the wing and mesh motion, and in remeshing. Here we use the version of the DSD/SST formulation derived in conjunction with the variational multiscale (VMS) method, and this version is called "DSD/SST-VMST." The structural mechanics computations are based on the Kirchhoff-Love shell model. The sequential-coupling technique is applicable to some classes of FSI problems, especially those with temporally-periodic behavior. We show that it performs well in FSI computations of the flapping-wing aerodynamics we consider here. In addition to the straight-flight case, we analyze cases where the MAV body has rolling, pitching, or rolling and pitching motion. We study how all these influence the lift and thrust.
引用
收藏
页码:213 / 233
页数:21
相关论文
共 92 条
[11]   Computational vascular fluid-structure interaction: methodology and application to cerebral aneurysms [J].
Bazilevs, Y. ;
Hsu, M. -C. ;
Zhang, Y. ;
Wang, W. ;
Kvamsdal, T. ;
Hentschel, S. ;
Isaksen, J. G. .
BIOMECHANICS AND MODELING IN MECHANOBIOLOGY, 2010, 9 (04) :481-498
[12]   A fully-coupled fluid-structure interaction simulation of cerebral aneurysms [J].
Bazilevs, Y. ;
Hsu, M. -C. ;
Zhang, Y. ;
Wang, W. ;
Liang, X. ;
Kvamsdal, T. ;
Brekken, R. ;
Isaksen, J. G. .
COMPUTATIONAL MECHANICS, 2010, 46 (01) :3-16
[13]   Large eddy simulation of turbulent Taylor-Couette flow using isogeometric analysis and the residual-based variational multiscale method [J].
Bazilevs, Y. ;
Akkerman, I. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (09) :3402-3414
[14]   Patient-specific isogeometric fluid-structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device [J].
Bazilevs, Y. ;
Gohean, J. R. ;
Hughes, T. J. R. ;
Moser, R. D. ;
Zhang, Y. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2009, 198 (45-46) :3534-3550
[15]   CHALLENGES AND DIRECTIONS IN COMPUTATIONAL FLUID-STRUCTURE INTERACTION [J].
Bazilevs, Yuri ;
Takizawa, Kenji ;
Tezduyar, Tayfun E. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2013, 23 (02) :215-221
[16]   ALE-VMS AND ST-VMS METHODS FOR COMPUTER MODELING OF WIND-TURBINE ROTOR AERODYNAMICS AND FLUID-STRUCTURE INTERACTION [J].
Bazilevs, Yuri ;
Hsu, Ming-Chen ;
Takizawa, Kenji ;
Tezduyar, Tayfun E. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2012, 22
[17]   Computational fluid-structure interaction: methods and application to a total cavopulmonary connection [J].
Bazilevs, Yuri ;
Hsu, M. -C. ;
Benson, D. J. ;
Sankaran, S. ;
Marsden, A. L. .
COMPUTATIONAL MECHANICS, 2009, 45 (01) :77-89
[18]  
Brooks A.N., 1982, COMPUT METHODS APPL, V32, P199
[19]   A TIME INTEGRATION ALGORITHM FOR STRUCTURAL DYNAMICS WITH IMPROVED NUMERICAL DISSIPATION - THE GENERALIZED-ALPHA METHOD [J].
CHUNG, J ;
HULBERT, GM .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1993, 60 (02) :371-375
[20]   Flexural stiffness in insect wings I. Scaling and the influence of wing venation [J].
Combes, SA ;
Daniel, TL .
JOURNAL OF EXPERIMENTAL BIOLOGY, 2003, 206 (17) :2979-2987