TWISTED CONJUGACY CLASSES IN LATTICES IN SEMISIMPLE LIE GROUPS

被引:15
作者
Mubeena, T. [1 ]
Sankaran, P. [1 ]
机构
[1] Inst Math Sci, Madras 600113, Tamil Nadu, India
关键词
twisted conjugacy classes; lattices in semisimple Lie groups; S-arithmetic lattices; groups with R-infinity property; NILPOTENT GROUPS; AUTOMORPHISM;
D O I
10.1007/s00031-014-9249-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a group automorphism I center dot: I" -> aEuro parts per thousand I", one has an action of I" on itself by I center dot-twisted conjugacy, namely, g.x = gxI center dot(g (-1)). The orbits of this action are called I center dot-conjugacy classes. One says that I" has the Ra-property if there are infinitely many I center dot-conjugacy classes for every automorphism I center dot of I". In this paper we show that any irreducible lattice in a connected semisimple Lie group having finite centre and rank at least 2 has the Ra-property.
引用
收藏
页码:159 / 169
页数:11
相关论文
共 29 条
[1]  
[Anonymous], 2001, DIFFERENTIAL GEOMETR
[2]   TWISTED CONJUGACY CLASSES IN R. THOMPSON'S GROUP F [J].
Bleak, Collin ;
Fel'shtyn, Alexander ;
Goncalves, Daciberg L. .
PACIFIC JOURNAL OF MATHEMATICS, 2008, 238 (01) :1-6
[3]  
BOREL A., 1969, ALGEBRAIC GEOM, P43
[4]  
Borel A., 1998, Texts and Readings in Mathematics, V16
[5]  
Deligne P., 1978, C R ACAD SCI PARIS A, V287, pA203
[6]  
Fel'shtyn A., 2012, ARXIV12043175V2
[7]   Twisted conjugacy classes in saturated weakly branch groups [J].
Fel'shtyn, Alexander ;
Leonov, Yuriy ;
Troitsky, Evgenij .
GEOMETRIAE DEDICATA, 2008, 134 (01) :61-73
[8]  
Fel'shtyn A, 2008, PROG MATH, V265, P399
[9]   New directions in Nielsen-Reidemeister theory [J].
Fel'shtyn, Alexander .
TOPOLOGY AND ITS APPLICATIONS, 2010, 157 (10-11) :1724-1735
[10]   Twisted conjugacy classes in symplectic groups, mapping class groups and braid groups (with an appendix written jointly with Francois Dahmani) [J].
Fel'shtyn, Alexander ;
Goncalves, Daciberg L. .
GEOMETRIAE DEDICATA, 2010, 146 (01) :211-223