Gevrey-Smoothness of Elliptic Lower Dimensional Invariant Tori in Hamiltonian Systems

被引:0
作者
Wang, Bingfeng [1 ]
Shi, Yanling [2 ]
Jiang, Shunjun [3 ]
机构
[1] Nanjing JinLing High Sch, Nanjing 210005, Jiangsu, Peoples R China
[2] Southeast Univ, Dept Math, Nanjing 210096, Jiangsu, Peoples R China
[3] Nanjing Tech Univ, Dept Math, Nanjing 211800, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Hamiltonian system; Invariant tori; Gevrey-smoothness; KAM iteration; NON-DEGENERACY CONDITION; PERSISTENCE;
D O I
10.1007/s12346-017-0236-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies Gevrey smoothness of elliptic lower dimensional invariant tori in Hamiltonian systems under partial Melnikov's conditions and Riissmann's nondegeneracy condition.
引用
收藏
页码:345 / 366
页数:22
相关论文
共 22 条
[1]  
[Anonymous], 1993, LECT NOTES MATH
[2]  
[Anonymous], 1968, SOV MATH DOKL
[3]  
Bourgain J, 1997, MATH RES LETT, V4, P445
[4]  
Bourgain J., 1994, Int. Math. Res. Not., V1994, P475, DOI [10.1155/S1073792894000516, DOI 10.1155/S1073792894000516]
[5]  
Bruno A. D., 1997, T MOSCOW MATH SOC, V25, P131
[6]  
Eliasson L. H., 1988, Ann. Sc. Norm. Super. Pisa Cl. Sci, V15, P115
[7]  
Kuksin S. B., 1988, MAT SB, V136
[8]  
Melnikov V., 1965, Sov. Math. Dokl., V6, P1592
[9]   Invariant tori, effective stability, and quasimodes with exponentially small error terms I - Birkhoff normal forms [J].
Popov, G .
ANNALES HENRI POINCARE, 2000, 1 (02) :223-248
[10]   KAM theorem for Gevrey Hamiltonians [J].
Popov, G .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2004, 24 :1753-1786