Mean time exit and isoperimetric inequalities for minimal submanifolds of Nx

被引:7
作者
Bessa, G. Pacelli [1 ]
Montenegro, J. Fabio [1 ]
机构
[1] Univ Fed Ceara, Dept Matemat, BR-60455760 Fortaleza, Ceara, Brazil
关键词
CURVATURE SURFACES; H-HYPERSURFACES; EXTRINSIC BALLS; EIGENVALUE;
D O I
10.1112/blms/bdn121
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Based on Markvorsen and Palmer's work on mean time exit and isoperimetric inequalities, we establish a slightly better isoperimetric inequality and mean time exit estimates for minimal submanifolds of N x when N is non-positively curved. We prove isoperimetric inequalities for submanifolds with tamed second fundamental form in Hadamard spaces with bounded sectional curvature. We use mean time exit functions to show that spherically symmetric manifolds with geodesic spheres with exponential volume growth have a positive first eigenvalue.
引用
收藏
页码:242 / 252
页数:11
相关论文
共 24 条
[1]   A Hopf differential for constant mean curvature surfaces in S2 x R and H2 x R [J].
Abresch, U ;
Rosenberg, H .
ACTA MATHEMATICA, 2004, 193 (02) :141-174
[2]  
[Anonymous], GRUNDLEHREN MATH WIS
[3]  
Barroso CS, 2006, INT J APPL MATH STAT, V6, P82
[4]   On cylindrically bounded H-hypersurfaces of Hn x R [J].
Bessa, G. Pacelli ;
Costa, M. Silvana .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2008, 26 (03) :323-326
[5]  
Bessa GP, 2007, COMMUN ANAL GEOM, V15, P725
[6]  
Bessa GP, 2007, GEOMETRIAE DEDICATA, V127, P1, DOI 10.1007/s10711-007-9145-9
[7]   Eigenvalue estimates for submanifolds with locally bounded mean curvature [J].
Bessa, GP ;
Montenegro, JF .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2003, 24 (03) :279-290
[8]  
COSTA M. H. A., 2007, THESIS U FEDERAL CEA
[9]  
Dynkin E., 1965, MARKOV PROCESSES
[10]   Minimal surfaces of Riemann type in three-dimensional product manifolds [J].
Hauswirth, L .
PACIFIC JOURNAL OF MATHEMATICS, 2006, 224 (01) :91-117