Controlling fibroblast adhesion and proliferation by 1D Al2O3 nanostructures

被引:1
|
作者
Aktas, Oral Cenk [1 ,2 ]
Metzger, Wolfgang [3 ]
Mees, Lisa [3 ]
Martinez, Marina Miro [4 ]
Haidar, Ayman [2 ]
Oberringer, Martin [3 ]
Wennemuth, Gunther [5 ]
Puetz, Norbert [6 ]
Ghori, Muhammad Zubair [1 ]
Pohlemann, Tim [3 ]
Veith, Michael [4 ]
机构
[1] Christian Albrechts Univ Kiel, Inst Mat Sci, D-24143 Kiel, Germany
[2] Saarland Univ, Dept Paediat Cardiol, D-66421 Homburg, Germany
[3] Saarland Univ, Dept Trauma Hand & Reconstruct Surg, D-66421 Homburg, Germany
[4] INM Leibniz Inst New Mat, Campus D2 2, D-66123 Saarbrucken, Germany
[5] Univ Clin Essen, Dept Anat, D-45147 Essen, Germany
[6] Saarland Univ, Dept Anat & Cell Biol, D-66421 Homburg, Germany
关键词
biomechanics; adhesion; surface chemistry; biomedical materials; cellular biophysics; surface topography; nanostructured materials; alumina; nanomedicine; fibrotic encapsulation; medical devices; human fibroblasts; cell size; cell number; well-defined actin fibres; focal adhesions; distribution density; fibroblast adhesion; 1D nanostructures; distribution densities; fibroblast proliferation; fibroblast-surface interaction; one-dimensional aluminium oxide nanostructures; Al2O3; SURFACE; NANOTOPOGRAPHY; TOPOGRAPHY;
D O I
10.1049/iet-nbt.2018.5088
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The fibrotic encapsulation, which is mainly accompanied by an excessive proliferation of fibroblasts, is an undesired phenomenon after the implantation of various medical devices. Beside the surface chemistry, the topography plays also a major role in the fibroblast-surface interaction. In the present study, one-dimensional aluminium oxide (1D Al2O3) nanostructures with different distribution densities were prepared to reveal the response of human fibroblasts to the surface topography. The cell size, the cell number and the ability to form well-defined actin fibres and focal adhesions were significantly impaired with increasing distribution density of the 1D Al2O3 nanostructures on the substratum.
引用
收藏
页码:621 / 625
页数:5
相关论文
共 50 条
  • [1] Recombinant Phage Coated 1D Al2O3 Nanostructures for Controlling the Adhesion and Proliferation of Endothelial Cells
    Lee, Juseok
    Jeon, Hojeong
    Haidar, Ayman
    Abdul-Khaliq, Hashim
    Veith, Michael
    Aktas, Cenk
    Kim, Youngjun
    BIOMED RESEARCH INTERNATIONAL, 2015, 2015
  • [2] 3D and 2D structural characterization of 1D Al/Al2O3 biphasic nanostructures
    Miro, M. Martinez
    Veith, M.
    Lee, J.
    Soldera, F.
    Muecklich, F.
    Bennewitz, R.
    Aktas, C.
    JOURNAL OF MICROSCOPY, 2015, 258 (02) : 113 - 118
  • [3] From sheets to fibers:: A novel approach to γ-AlOOH and γ-Al2O3 1D nanostructures
    Zhang, M
    Zhang, R
    Xi, GC
    Liu, Y
    Qian, YT
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2006, 6 (05) : 1437 - 1440
  • [4] Enhanced fibroblast cell adhesion on Al/Al2O3 nanowires
    Aktas, O. C.
    Sander, M.
    Miro, M. M.
    Lee, J.
    Akkan, C. K.
    Smail, H.
    Ott, A.
    Veith, M.
    APPLIED SURFACE SCIENCE, 2011, 257 (08) : 3489 - 3494
  • [5] Stoichiometry and adhesion of Nb/Al2O3
    Zhang, W
    Smith, JR
    PHYSICAL REVIEW B, 2000, 61 (24) : 16883 - 16889
  • [6] IMPROVED ADHESION OF COPPER ON AL2O3
    DEUTSCHMANN, L
    SUHR, H
    KRUG, D
    STRAUB, U
    FRESENIUS JOURNAL OF ANALYTICAL CHEMISTRY, 1991, 341 (5-6): : 339 - 342
  • [7] Improvement of an Al2O3/CuO heterostructure photoelectrode by controlling the Al2O3 precursor concentration
    Lee, Suhun
    Ryu, Hyukhyun
    Lee, Won-Jae
    Bae, Jong-Seong
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2020, 82 : 63 - 70
  • [8] Nonstoichiometric interfaces and Al2O3 adhesion with Al and Ag
    Zhang, W
    Smith, JR
    PHYSICAL REVIEW LETTERS, 2000, 85 (15) : 3225 - 3228
  • [9] Pt effects in γ-Ni(Al)/α-Al2O3 adhesion
    Jiang, Yong
    Smith, John R.
    JOURNAL OF MATERIALS SCIENCE, 2009, 44 (07) : 1734 - 1740
  • [10] Pt effects in γ-Ni(Al)/α-Al2O3 adhesion
    Yong Jiang
    John R. Smith
    Journal of Materials Science, 2009, 44 : 1734 - 1740