deBInfer: Bayesian inference for dynamical models of biological systems in R

被引:22
作者
Boersch-Supan, Philipp H. [1 ,2 ,3 ]
Ryan, Sadie J. [2 ,3 ]
Johnson, Leah R. [1 ,4 ]
机构
[1] Univ S Florida, Dept Integrat Biol, Tampa, FL 33610 USA
[2] Univ Florida, Gainesville, FL 32610 USA
[3] Univ Florida, Dept Geog, Gainesville, FL 32611 USA
[4] Virginia Polytech Inst & State Univ, Dept Stat, Blacksburg, VA 24061 USA
来源
METHODS IN ECOLOGY AND EVOLUTION | 2017年 / 8卷 / 04期
基金
美国国家科学基金会;
关键词
chytridiomycosis; delay-differential equation; Markov chain Monte Carlo; model calibration; ordinary differential equation; parameter estimation; PARAMETER-ESTIMATION; GENERALITY; SELECTION;
D O I
10.1111/2041-210X.12679
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Understanding the mechanisms underlying biological systems, and ultimately, predicting their behaviours in a changing environment, requires overcoming the gap between mathematical models and experimental or observational data. Differential equations (DEs) are commonly used to model the temporal evolution of biological systems, but statistical methods for comparing DE models to data and for parameter inference are relatively poorly developed. This is especially problematic in the context of biological systems where observations are often noisy and only a small number of time points may be available. The Bayesian approach offers a coherent framework for parameter inference that can account for multiple sources of uncertainty, while making use of prior information. It offers a rigorous methodology for parameter inference, as well as modelling the link between unobservable model states and parameters, and observable quantities. We present deBInfer, a package for the statistical computing environment R, implementing a Bayesian framework for parameter inference in DEs. deBInfer provides templates for the DE model, the observation model and data likelihood, and the model parameters and their prior distributions. A Markov chain Monte Carlo (MCMC) procedure processes these inputs to estimate the posterior distributions of the parameters and any derived quantities, including the model trajectories. Further functionality is provided to facilitate MCMC diagnostics, the visualization of the posterior distributions of model parameters and trajectories, and the use of compiled DE models for improved computational performance. The templating approach makes deBInfer applicable to a wide range of DE models. We demonstrate its application to ordinary and delay DE models for population ecology.
引用
收藏
页码:511 / 518
页数:8
相关论文
共 34 条
[1]   Particle Markov chain Monte Carlo methods [J].
Andrieu, Christophe ;
Doucet, Arnaud ;
Holenstein, Roman .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2010, 72 :269-342
[2]  
[Anonymous], 2003, MAT BIO MED
[3]  
[Anonymous], 2013, Parameter estimation and inverse problems, DOI DOI 10.1016/C2009-0-61134-X
[4]  
[Anonymous], J STAT SOFT IN PRESS
[5]  
[Anonymous], 2007, Models for ecological data: an introduction
[6]   Computational approaches to parameter estimation and model selection in immunology [J].
Baker, CTH ;
Bocharov, GA ;
Ford, JM ;
Lumb, PM ;
Norton, SJ ;
Paul, CAH ;
Junt, T ;
Krebs, P ;
Ludewig, B .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 184 (01) :50-76
[7]   Fitting ordinary differential equations to short time course data [J].
Brewer, Daniel ;
Barenco, Martino ;
Callard, Robin ;
Hubank, Michael ;
Stark, Jaroslav .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2008, 366 (1865) :519-544
[8]  
Brooks S, 2011, CH CRC HANDB MOD STA, pXIX
[9]  
Chkrebtii O. A., 2015, ARXIV13062365
[10]   A Bayesian Framework for Parameter Estimation in Dynamical Models [J].
Coelho, Flavio Codeco ;
Codeco, Claudia Torres ;
Gomes, M. Gabriela M. .
PLOS ONE, 2011, 6 (05)