We investigate the properties of a special kind of frame, which we call the Euler-Rodrigues frame (ERF), defined on the spatial Pythagorean-hodograph (PH) curves. It is a frame that can be naturally constructed from the PH condition. It turns out that this ERF enjoys some nice properties. In particular, a close examination of its angular velocity against a rotation-minimizing frame yields a characterization of PH curves whose ERF achieves rotation-minimizing property. This computation leads into a new fact that this ERF is equivalent to the Frenet frame on cubic PH curves. Furthermore, we prove that the minimum degree of non-planar PH curves whose ERF is an rotation-minimizing frame is seven, and provide a parameterization of the coefficients of those curves. (C) 2002 Elsevier Science B.V. All rights reserved.
机构:
Univ Calif Davis, Mech & Aerosp Engn, Davis, CA 95616 USAUniv Calif Davis, Mech & Aerosp Engn, Davis, CA 95616 USA
Farouki, Rida T.
Knez, Marjeta
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ljubljana, Fac Math & Phys, Jadranska 19, Ljubljana, Slovenia
Inst Math Phys & Mech, Jadranska 19, Ljubljana, SloveniaUniv Calif Davis, Mech & Aerosp Engn, Davis, CA 95616 USA
Knez, Marjeta
Vitrih, Vito
论文数: 0引用数: 0
h-index: 0
机构:
Univ Primorska, Fac Math Nat Sci & Informat Technol, Glagoljaska 8, Koper, Slovenia
Univ Primorska, Andrej Marusic Inst, Muzejski Trg 2, Koper, SloveniaUniv Calif Davis, Mech & Aerosp Engn, Davis, CA 95616 USA
Vitrih, Vito
Zagar, Emil
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ljubljana, Fac Math & Phys, Jadranska 19, Ljubljana, Slovenia
Inst Math Phys & Mech, Jadranska 19, Ljubljana, SloveniaUniv Calif Davis, Mech & Aerosp Engn, Davis, CA 95616 USA
机构:
Univ Ljubljana, FMF, Jadranska 19, Ljubljana, Slovenia
IMFM, Jadranska 19, Ljubljana, SloveniaUniv Ljubljana, FMF, Jadranska 19, Ljubljana, Slovenia