Euler-Rodrigues frames on spatial Pythagorean-hodograph curves

被引:60
|
作者
Choi, HI [1 ]
Han, CY [1 ]
机构
[1] Seoul Natl Univ, Dept Math, Seoul 151747, South Korea
关键词
Euler-Rodrigues frame; Pythagorean-hodograph curve; rotation-minimizing frame; quaternion;
D O I
10.1016/S0167-8396(02)00165-6
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We investigate the properties of a special kind of frame, which we call the Euler-Rodrigues frame (ERF), defined on the spatial Pythagorean-hodograph (PH) curves. It is a frame that can be naturally constructed from the PH condition. It turns out that this ERF enjoys some nice properties. In particular, a close examination of its angular velocity against a rotation-minimizing frame yields a characterization of PH curves whose ERF achieves rotation-minimizing property. This computation leads into a new fact that this ERF is equivalent to the Frenet frame on cubic PH curves. Furthermore, we prove that the minimum degree of non-planar PH curves whose ERF is an rotation-minimizing frame is seven, and provide a parameterization of the coefficients of those curves. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:603 / 620
页数:18
相关论文
共 50 条
  • [1] Motion design with Euler-Rodrigues frames of quintic Pythagorean-hodograph curves
    Krajnc, Marjeta
    Vitrih, Vito
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2012, 82 (09) : 1696 - 1711
  • [2] Pythagorean-hodograph曲线的最小旋转Euler-Rodrigues标架优化方法
    彭丰富
    潘雨婷
    桂林电子科技大学学报, 2024, 44 (01) : 105 - 110
  • [3] Exact rotation-minimizing frames for spatial Pythagorean-hodograph curves
    Farouki, RT
    GRAPHICAL MODELS, 2002, 64 (06) : 382 - 395
  • [4] Planar projections of spatial Pythagorean-hodograph curves
    Farouki, Rida T.
    Knez, Marjeta
    Vitrih, Vito
    Zagar, Emil
    COMPUTER AIDED GEOMETRIC DESIGN, 2021, 91
  • [5] Spherical Pythagorean-hodograph curves
    Ueda, K
    MATHEMATICAL METHODS FOR CURVES AND SURFACES II, 1998, : 485 - 492
  • [6] Pythagorean-hodograph cycloidal curves
    Kozak, Jernej
    Krajnc, Marjeta
    Rogina, Mladen
    Vitrih, Vito
    JOURNAL OF NUMERICAL MATHEMATICS, 2015, 23 (04) : 345 - 360
  • [7] Dual representation of spatial rational Pythagorean-hodograph curves
    Kozak, Jernej
    Krajnc, Marjeta
    Vitrih, Vito
    COMPUTER AIDED GEOMETRIC DESIGN, 2014, 31 (01) : 43 - 56
  • [8] Rational Pythagorean-hodograph space curves
    Farouki, Rida T.
    Sir, Zbynek
    COMPUTER AIDED GEOMETRIC DESIGN, 2011, 28 (02) : 75 - 88
  • [9] Pythagorean-hodograph curves and related topics
    Farouki, Rida T.
    Juettler, Bert
    Manni, Carla
    COMPUTER AIDED GEOMETRIC DESIGN, 2008, 25 (4-5) : 203 - 204
  • [10] Interpolation with spatial rational Pythagorean-hodograph curves of class 4
    Krajnc, Marjeta
    COMPUTER AIDED GEOMETRIC DESIGN, 2017, 56 : 16 - 34