Thermal conductance of graphene/hexagonal boron nitride heterostructures

被引:24
作者
Lu, Simon [1 ]
McGaughey, Alan J. H. [1 ]
机构
[1] Carnegie Mellon Univ, Dept Mech Engn, Pittsburgh, PA 15213 USA
基金
美国国家科学基金会; 美国安德鲁·梅隆基金会;
关键词
LATTICE-DYNAMICAL CALCULATION; INPLANE HETEROSTRUCTURES; GRAPHENE; CONDUCTIVITY; RESISTANCE; TRANSPORT;
D O I
10.1063/1.4978362
中图分类号
O59 [应用物理学];
学科分类号
摘要
The lattice-based scattering boundary method is applied to compute the phonon mode-resolved transmission coefficients and thermal conductances of in-plane heterostructures built from graphene and hexagonal boron nitride (hBN). The thermal conductance of all structures is dominated by acoustic phonon modes near the Brillouin zone center that have high group velocity, population, and transmission coefficient. Out-of-plane modes make their most significant contributions at low frequencies, whereas in-plane modes contribute across the frequency spectrum. Finite-length superlattice junctions between graphene and hBN leads have a lower thermal conductance than comparable junctions between two graphene leads due to lack of transmission in the hBN phonon bandgap. The thermal conductances of bilayer systems differ by less than 10% from their singlelayer counterparts on a per area basis, in contrast to the strong thermal conductivity reduction when moving from single- to multi-layer graphene.
引用
收藏
页数:10
相关论文
共 46 条
[31]   Controlling the thermal conductance of graphene/h-BN lateral interface with strain and structure engineering [J].
Ong, Zhun-Yong ;
Zhang, Gang ;
Zhang, Yong-Wei .
PHYSICAL REVIEW B, 2016, 93 (07)
[32]   Efficient approach for modeling phonon transmission probability in nanoscale interfacial thermal transport [J].
Ong, Zhun-Yong ;
Zhang, Gang .
PHYSICAL REVIEW B, 2015, 91 (17)
[33]  
Ravichandran J, 2014, NAT MATER, V13, P168, DOI [10.1038/NMAT3826, 10.1038/nmat3826]
[34]   Two-Dimensional Phonon Transport in Supported Graphene [J].
Seol, Jae Hun ;
Jo, Insun ;
Moore, Arden L. ;
Lindsay, Lucas ;
Aitken, Zachary H. ;
Pettes, Michael T. ;
Li, Xuesong ;
Yao, Zhen ;
Huang, Rui ;
Broido, David ;
Mingo, Natalio ;
Ruoff, Rodney S. ;
Shi, Li .
SCIENCE, 2010, 328 (5975) :213-216
[35]   Characterization of thermal transport in low-dimensional boron nitride nanostructures [J].
Sevik, Cem ;
Kinaci, Alper ;
Haskins, Justin B. ;
Cagin, Tahir .
PHYSICAL REVIEW B, 2011, 84 (08)
[36]   Minimum thermal conductivity of superlattices [J].
Simkin, MV ;
Mahan, GD .
PHYSICAL REVIEW LETTERS, 2000, 84 (05) :927-930
[37]   THERMAL-BOUNDARY RESISTANCE [J].
SWARTZ, ET ;
POHL, RO .
REVIEWS OF MODERN PHYSICS, 1989, 61 (03) :605-668
[38]   MODELING SOLID-STATE CHEMISTRY - INTERATOMIC POTENTIALS FOR MULTICOMPONENT SYSTEMS [J].
TERSOFF, J .
PHYSICAL REVIEW B, 1989, 39 (08) :5566-5568
[39]   Singular behavior of the Debye-Waller factor of graphene [J].
Tewary, V. K. ;
Yang, B. .
PHYSICAL REVIEW B, 2009, 79 (12)
[40]   Superior thermal conductivity in suspended bilayer hexagonal boron nitride [J].
Wang, Chengru ;
Guo, Jie ;
Dong, Lan ;
Aiyiti, Adili ;
Xu, Xiangfan ;
Li, Baowen .
SCIENTIFIC REPORTS, 2016, 6