Thermal conductance of graphene/hexagonal boron nitride heterostructures

被引:24
作者
Lu, Simon [1 ]
McGaughey, Alan J. H. [1 ]
机构
[1] Carnegie Mellon Univ, Dept Mech Engn, Pittsburgh, PA 15213 USA
基金
美国国家科学基金会; 美国安德鲁·梅隆基金会;
关键词
LATTICE-DYNAMICAL CALCULATION; INPLANE HETEROSTRUCTURES; GRAPHENE; CONDUCTIVITY; RESISTANCE; TRANSPORT;
D O I
10.1063/1.4978362
中图分类号
O59 [应用物理学];
学科分类号
摘要
The lattice-based scattering boundary method is applied to compute the phonon mode-resolved transmission coefficients and thermal conductances of in-plane heterostructures built from graphene and hexagonal boron nitride (hBN). The thermal conductance of all structures is dominated by acoustic phonon modes near the Brillouin zone center that have high group velocity, population, and transmission coefficient. Out-of-plane modes make their most significant contributions at low frequencies, whereas in-plane modes contribute across the frequency spectrum. Finite-length superlattice junctions between graphene and hBN leads have a lower thermal conductance than comparable junctions between two graphene leads due to lack of transmission in the hBN phonon bandgap. The thermal conductances of bilayer systems differ by less than 10% from their singlelayer counterparts on a per area basis, in contrast to the strong thermal conductivity reduction when moving from single- to multi-layer graphene.
引用
收藏
页数:10
相关论文
共 46 条
[1]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[2]  
Balandin AA, 2011, NAT MATER, V10, P569, DOI [10.1038/nmat3064, 10.1038/NMAT3064]
[3]   Thermal Transport in Suspended and Supported Monolayer Graphene Grown by Chemical Vapor Deposition [J].
Cai, Weiwei ;
Moore, Arden L. ;
Zhu, Yanwu ;
Li, Xuesong ;
Chen, Shanshan ;
Shi, Li ;
Ruoff, Rodney S. .
NANO LETTERS, 2010, 10 (05) :1645-1651
[4]   Raman Measurements of Thermal Transport in Suspended Monolayer Graphene of Variable Sizes in Vacuum and Gaseous Environments [J].
Chen, Shanshan ;
Moore, Arden L. ;
Cai, Weiwei ;
Suk, Ji Won ;
An, Jinho ;
Mishra, Columbia ;
Amos, Charles ;
Magnuson, Carl W. ;
Kang, Junyong ;
Shi, Li ;
Ruoff, Rodney S. .
ACS NANO, 2011, 5 (01) :321-328
[5]   Coherent phonon transport in short-period two-dimensional superlattices of graphene and boron nitride [J].
da Silva, Carlos ;
Saiz, Fernan ;
Romero, David A. ;
Amon, Cristina H. .
PHYSICAL REVIEW B, 2016, 93 (12)
[6]  
Dove M., 2005, Introduction to Lattice Dynamics
[7]   Implications of cross-species interactions on the temperature dependence of Kapitza conductance [J].
Duda, John C. ;
English, Timothy S. ;
Piekos, Edward S. ;
Soffa, William A. ;
Zhigilei, Leonid V. ;
Hopkins, Patrick E. .
PHYSICAL REVIEW B, 2011, 84 (19)
[8]   On the Linear Temperature Dependence of Phonon Thermal Boundary Conductance in the Classical Limit [J].
Duda, John C. ;
Norris, Pamela M. ;
Hopkins, Patrick E. .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2011, 133 (07)
[9]   Extension of the diffuse mismatch model for thermal boundary conductance between isotropic and anisotropic materials [J].
Duda, John C. ;
Smoyer, Justin L. ;
Norris, Pamela M. ;
Hopkins, Patrick E. .
APPLIED PHYSICS LETTERS, 2009, 95 (03)
[10]   Thermal Conductivity of Graphene and Graphite: Collective Excitations and Mean Free Paths [J].
Fugallo, Giorgia ;
Cepellotti, Andrea ;
Paulatto, Lorenzo ;
Lazzeri, Michele ;
Marzari, Nicola ;
Mauri, Francesco .
NANO LETTERS, 2014, 14 (11) :6109-6114