Automated multidimensional phenotypic profiling using large public microarray repositories

被引:20
作者
Xu, Min [1 ]
Li, Wenyuan [1 ]
James, Gareth M. [2 ]
Mehan, Michael R. [1 ]
Zhou, Xianghong Jasmine [1 ]
机构
[1] Univ So Calif, Dept Biol Sci, Los Angeles, CA 90089 USA
[2] Univ So Calif, Marshall Sch Business, Los Angeles, CA 90089 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
genotype-phenotype association; phenotype prediction; phenotype profiling; REFRACTORY-ANEMIA; PHENOME; LEUKEMIA; NETWORK;
D O I
10.1073/pnas.0900883106
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Phenotypes are complex, and difficult to quantify in a high-throughput fashion. The lack of comprehensive phenotype data can prevent or distort genotype-phenotype mapping. Here, we describe "PhenoProfiler,'' a computational method that enables in silico phenotype profiling. Drawing on the principle that similar gene expression patterns are likely to be associated with similar phenotype patterns, PhenoProfiler supplements the missing quantitative phenotype information for a given microarray dataset based on other well-characterized microarray datasets. We applied our method to 587 human microarray datasets covering >14,000 samples, and confirmed that the predicted phenotype profiles are highly consistent with true phenotype descriptions. PhenoProfiler offers several unique capabilities: (i) automated, multidimensional phenotype profiling, facilitating the analysis and treatment design of complex diseases; (ii) the extrapolation of phenotype profiles beyond provided classes; and (iii) the detection of confounding phenotype factors that could otherwise bias biological inferences. Finally, because no direct comparisons are made between gene expression values from different datasets, the method can use the entire body of cross-platform microarray data. This work has produced a compendium of phenotype profiles for the National Center for Biotechnology Information GEO datasets, which can facilitate an unbiased understanding of the transcriptome-phenome mapping. The continued accumulation of microarray data will further increase the power of PhenoProfiler, by increasing the variety and the quality of phenotypes to be profiled.
引用
收藏
页码:12323 / 12328
页数:6
相关论文
共 18 条
[11]   Specific targeted therapy of chronic myelogenous leukemia with imatinib [J].
Deininger, MWN ;
Druker, BJ .
PHARMACOLOGICAL REVIEWS, 2003, 55 (03) :401-423
[12]   HIGH-DIMENSIONAL CLASSIFICATION USING FEATURES ANNEALED INDEPENDENCE RULES [J].
Fan, Jianqing ;
Fan, Yingying .
ANNALS OF STATISTICS, 2008, 36 (06) :2605-2637
[13]   The Human Phenome Project [J].
Freimer, N ;
Sabatti, C .
NATURE GENETICS, 2003, 34 (01) :15-21
[14]   A human phenome-interactome network of protein complexes implicated in genetic disorders [J].
Lage, Kasper ;
Karlberg, E. Olof ;
Storling, Zenia M. ;
Olason, Pall I. ;
Pedersen, Anders G. ;
Rigina, Olga ;
Hinsby, Anders M. ;
Tumer, Zeynep ;
Pociot, Flemming ;
Tommerup, Niels ;
Moreau, Yves ;
Brunak, Soren .
NATURE BIOTECHNOLOGY, 2007, 25 (03) :309-316
[15]  
Lussier Yves A, 2007, Proc Am Thorac Soc, V4, P18, DOI 10.1513/pats.200607-142JG
[16]   Phenome connections [J].
Oti, Martin ;
Huynen, Martijn A. ;
Brunner, Han G. .
TRENDS IN GENETICS, 2008, 24 (03) :103-106
[17]   TERM-WEIGHTING APPROACHES IN AUTOMATIC TEXT RETRIEVAL [J].
SALTON, G ;
BUCKLEY, C .
INFORMATION PROCESSING & MANAGEMENT, 1988, 24 (05) :513-523
[18]   Metagene projection for cross-platform, cross-species characterization of global transcriptional states [J].
Tamayo, Pablo ;
Scanfeld, Daniel ;
Ebert, Benjamin L. ;
Gillette, Michael A. ;
Roberts, Charles W. M. ;
Mesirov, Jill P. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (14) :5959-5964