Stable determination of cavities in elastic bodies

被引:43
作者
Morassi, A
Rosset, E
机构
[1] Univ Udine, Dipartimento Georisorse & Terr, I-33100 Udine, Italy
[2] Univ Trieste, Dipartimento Sci Matemat, I-34100 Trieste, Italy
关键词
D O I
10.1088/0266-5611/20/2/010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a conditional stability estimate for the inverse problem of determining either cavities inside an elastic body Omega or unknown boundary portions, from a single measurement of traction and displacement taken on the accessible part of the exterior boundary of Omega.
引用
收藏
页码:453 / 480
页数:28
相关论文
共 27 条
[1]  
Adolfsson V, 1997, COMMUN PUR APPL MATH, V50, P935, DOI 10.1002/(SICI)1097-0312(199710)50:10<935::AID-CPA1>3.0.CO
[2]  
2-H
[3]   ESTIMATES NEAR BOUNDARY FOR SOLUTIONS OF ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS SATISFYING GENERAL BOUNDARY CONDITIONS .2. [J].
AGMON, S ;
DOUGLIS, A ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1964, 17 (01) :35-&
[4]   Examples of instability in inverse boundary-value problems [J].
Alessandrini, G .
INVERSE PROBLEMS, 1997, 13 (04) :887-897
[5]   Detecting cavities by electrostatic boundary measurements [J].
Alessandrini, G ;
Morassi, A ;
Rosset, E .
INVERSE PROBLEMS, 2002, 18 (05) :1333-1353
[6]   Detecting an inclusion in an elastic body boundary measurements [J].
Alessandrini, G ;
Morassi, A ;
Rosset, E .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2002, 33 (06) :1247-1268
[7]   Strong unique continuation for the Lame system of elasticity [J].
Alessandrini, G ;
Morassi, A .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2001, 26 (9-10) :1787-1810
[8]   Optimal stability for the inverse problem of multiple cavities [J].
Alessandrini, G ;
Rondi, L .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 176 (02) :356-386
[9]   Optimal size estimates for the inverse conductivity problem with one measurement [J].
Alessandrini, G ;
Rosset, E ;
Seo, JK .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (01) :53-64
[10]   The inverse conductivity problem with one measurement: Bounds on the size of the unknown object [J].
Alessandrini, G ;
Rosset, E .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1998, 58 (04) :1060-1071