Evolution to the xtreme: Evolving evolutionary strategies using a meta-level approach

被引:8
作者
Deugo, D [1 ]
Ferguson, D [1 ]
机构
[1] Carleton Univ, Sch Comp Sci, Ottawa, ON K1S 5B6, Canada
来源
CEC2004: PROCEEDINGS OF THE 2004 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2 | 2004年
关键词
D O I
10.1109/CEC.2004.1330834
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we describe a meta-level evolutionary system that uses a meta-level GA to evolve strategies that perform better than known good strategies on a test bed of mathematical optimization problems. We examine the effects of the meta-level components and parameters on the problem set in order to help others in choosing the components and parameters for their meta-GAs.
引用
收藏
页码:31 / 38
页数:8
相关论文
共 18 条
[1]  
[Anonymous], P 4 ANN C EV PROGR
[2]  
[Anonymous], 1989, GENETIC ALGORITHM SE
[3]  
BAECK T, 1993, P 5 INT C GEN ALG, P2
[4]  
BAECK T, 1992, P 1 EUR C ART LIF CA, P227
[5]  
DAVIS L, 1989, PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON GENETIC ALGORITHMS, P61
[6]  
De Jong K. A., 1975, ANAL BEHAV CLASS GEN
[7]  
FERGUSON D, 2002, THESIS CARLETON U
[8]  
Freisleben B., 1993, Artificial Neural Nets and Genetic Algorithms. Proceedings of the International Conference, P392
[9]  
FREISLEBEN B, 1993, P 9 INT C CONTR SYST, V2, P485
[10]   OPTIMIZATION OF CONTROL PARAMETERS FOR GENETIC ALGORITHMS [J].
GREFENSTETTE, JJ .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1986, 16 (01) :122-128