Effective Invariant Theory of Permutation Groups Using Representation Theory

被引:2
作者
Borie, Nicolas [1 ]
机构
[1] Univ Paris Est Marne La Vallee, Lab Informat Gaspard Monge, Champs Sur Marne, France
来源
ALGEBRAIC INFORMATICS (CAI 2015) | 2015年 / 9270卷
关键词
Computational invariant theory; Representation theory; Permutation group; Specht polynomials;
D O I
10.1007/978-3-319-23021-4_6
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Using the representation theory of the symmetric group, we propose an algorithm to compute the invariant ring of a permutation group in the non modular case. Our approach has the advantage of reducing the amount of linear algebra computations and exploits a finer combinatorial description of the invariant ring. We build explicit generators for invariant rings by means of the higher Specht polynomials of the symmetric group.
引用
收藏
页码:58 / 69
页数:12
相关论文
共 21 条
[1]  
Abdeljaouad I., 2000, THESIS, P6
[2]  
[Anonymous], 2009, SAGE MATH SOFTWARE V
[3]  
[Anonymous], 2008, SAG COMB ENH SAG TOO
[4]  
Bergeron F., 2009, CMS TREATISES MATH, DOI DOI 10.1201/B10583
[5]  
Borie N., 2011, THESIS
[6]   Solving a system of algebraic equations with symmetries [J].
Colin, A .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1997, 117 :195-215
[7]  
Colin A, 1997, THESIS
[8]  
Derksen H., 2002, Encyclopaedia of Mathematical Sciences, V130
[9]  
Faugère JC, 2009, ISSAC2009: PROCEEDINGS OF THE 2009 INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION, P151
[10]   GROUP-ACTIONS ON STANLEY-REISNER RINGS AND INVARIANTS OF PERMUTATION-GROUPS [J].
GARSIA, AM ;
STANTON, D .
ADVANCES IN MATHEMATICS, 1984, 51 (02) :107-201