Hybrid Heterojunctions of Solution-Processed Semiconducting 2D Transition Metal Dichalcogenides

被引:29
|
作者
Yu, Xiaoyun [1 ]
Rahmanudin, Aiman [1 ]
Jeanbourquin, Xavier A. [1 ]
Tsokkou, Demetra [2 ]
Guijarro, Nestor [1 ]
Banerji, Natalie [2 ]
Sivula, Kevin [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Lab Mol Engn Optoelect Nanomat, Stn 6, CH-1015 Lausanne, Switzerland
[2] Univ Fribourg, Dept Chem, Chemin Musee 9, CH-1700 Fribourg, Switzerland
来源
ACS ENERGY LETTERS | 2017年 / 2卷 / 02期
基金
欧洲研究理事会;
关键词
ENERGY-CONVERSION; MOS2; HETEROSTRUCTURES; WSE2; NANOSHEETS; EXFOLIATION; WS2;
D O I
10.1021/acsenergylett.6b00707
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Exfoliated transition metal dichalcogenides (2D-TMDs) are attractive light-harvesting materials for large-area and inexpensive solar energy conversion given their ability to form highly tolerant heterojunctions. However, the preparation of large-area heterojunctions with these materials remains a challenge toward practical devices, and the details of photogenerated charge carrier harvesting are not well established. In this work, we use all solution-based methods to prepare large-area hybrid heterojunction films consisting of exfoliated semiconducting 2H-MoS2 flakes and a perylene-diimide (PDI) derivative. Hybrid photoelectrodes exhibited a 6-fold improvement in photocurrent compared to that of bare MoS2 or PDI films. Kelvin probe force microscopy, X-ray photoelectron spectroscopy, and transient absorption measurements of the hybrid films indicate the formation of an interfacial dipole at the MoS2/organic interface and suggest that the photogenerated holes transfer from MoS2 to the PDI. Moreover, performing the same analysis on MoSe2-based hybrid devices confirms the importance of proper valence band alignment for efficient charge transfer and photogenerated carrier collection in TMD/organic semiconductor hybrid heterojunctions.
引用
收藏
页码:524 / 531
页数:8
相关论文
共 50 条
  • [1] Solution-Processed 2D Transition Metal Dichalcogenides: Materials to CMOS Electronics
    Zou, Taoyu
    Noh, Yong-Young
    ACCOUNTS OF MATERIALS RESEARCH, 2023, 4 (06): : 548 - 559
  • [2] Electroluminescent Devices Based on 2D Semiconducting Transition Metal Dichalcogenides
    Wang, Junyong
    Verzhbitskiy, Ivan
    Eda, Goki
    ADVANCED MATERIALS, 2018, 30 (47)
  • [3] Flexible Nonvolatile Transistor Memory with Solution-Processed Transition Metal Dichalcogenides
    Kim, Richard Hahnkee
    Lee, Jinseong
    Kim, Kang Lib
    Cho, Suk Man
    Kim, Dong Ha
    Park, Cheolmin
    SMALL, 2017, 13 (20)
  • [4] Layered 2D semiconducting transition metal dichalcogenides for solar energy conversion
    Yu, Xiaoyun
    Sivula, Kevin
    CURRENT OPINION IN ELECTROCHEMISTRY, 2017, 2 (01) : 97 - 103
  • [5] 2D transition metal dichalcogenides
    Sajedeh Manzeli
    Dmitry Ovchinnikov
    Diego Pasquier
    Oleg V. Yazyev
    Andras Kis
    Nature Reviews Materials, 2
  • [6] 2D transition metal dichalcogenides
    Manzeli, Sajedeh
    Ovchinnikov, Dmitry
    Pasquier, Diego
    Yazyev, Oleg V.
    Kis, Andras
    NATURE REVIEWS MATERIALS, 2017, 2 (08):
  • [7] Strong Photocurrent from Solution-Processed Ruddlesden-Popper 2D Perovskite-MoS2 Hybrid Heterojunctions
    Ansari, Rashid M.
    Salunke, Akshaykumar D.
    Rahil, Mohammad
    Ahmad, Shahab
    ADVANCED MATERIALS INTERFACES, 2023, 10 (10)
  • [8] Solution-Processed 2D Transition Metal Dichalcogenide Networks for Scalable, Flexible Photosynaptic Device Arrays
    Song, Okin
    Rhee, Dongjoon
    Kim, Jihyun
    Jung, Myeongjin
    Kim, Sunkook
    Kim, In Soo
    Kang, Joohoon
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2024, 30 (03) : 1 - 8
  • [9] Defect Engineering Strategies Toward Controlled Functionalization of Solution-Processed Transition Metal Dichalcogenides
    Ippolito, Stefano
    Samori, Paolo
    SMALL SCIENCE, 2022, 2 (04):
  • [10] Tailoring the physicochemical properties of solution-processed transition metal dichalcogenides via molecular approaches
    Ippolito, Stefano
    Ciesielski, Artur
    Samori, Paolo
    CHEMICAL COMMUNICATIONS, 2019, 55 (61) : 8900 - 8914