MapK/GK/1 queue with the generalized foreground-background processor sharing discipline

被引:0
作者
D'Apice, C [1 ]
Pechinkin, A [1 ]
机构
[1] Univ Salerno, Dept Informat Engn & Appl Math, I-84084 Fisciano, SA, Italy
来源
ASMTA 2004: 11TH INTERNATIONAL CONFERENCE ON ANALYTICAL AND STOCHASTIC MODELLING TECHNIQUESAND APPLICATIONS, PROCEEDINGS | 2004年
关键词
queueing systems; Markov flow; foregroundbackground processor sharing;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Queueing systems with Markov arrival flow, customers of several types, generalized foreground-background processor-sharing discipline and either separated buffers of finite capacity, or common buffer of finite capacity for customers of all types, or common buffer of infinite capacity for customers of all types are under consideration. The mathematical relationships among the steady-state joint distributions of the number of customers of all types in these systems are obtained. The Laplace-Stieltjes transform of the steady-state distribution of the sojourn time for a customer of each type for the system with common buffer of infinite capacity is derived too.
引用
收藏
页码:16 / 22
页数:7
相关论文
共 12 条
[1]  
Bocharov P.P., 2004, QUEUEING THEORY
[2]  
NAGONENKO VA, 1980, IZV AKAD NAUK SSSR T, P62
[3]  
PECHINKIA AV, 1980, IZV AKAD NAUK SSSR T, P73
[4]  
PECHINKIN AV, 1987, POISK SIGNALA MNOGOK, V2, P137
[5]  
PECHINKIN AV, 1998, VEST ROSS U DRUZHBY, P104
[6]  
PECHINKIN AV, 1990, VEROJATNOST PROLOZHE, V116
[7]  
PECHINKIN AV, 1999, AVTOMAT TELEMEKH, P108
[8]  
PECHINKIN AV, 1981, IZV AKAD NAUK SSSR T, P120
[9]  
Schrage L. E., 1967, Manage. Sci., V13, P466
[10]  
SCHSSBERGER R, 1988, J APPL PROBAB, V25, P194