A S/N-doped high-capacity mesoporous carbon anode for Na-ion batteries

被引:83
作者
Li, Xiu [1 ,2 ]
Hu, Xincheng [2 ]
Zhou, Lin [3 ]
Wen, Rui [2 ]
Xu, Xun [1 ]
Chou, Shulei [1 ]
Chen, Libao [3 ]
Cao, An-Min [2 ]
Dou, Shixue [1 ]
机构
[1] Univ Wollongong, Inst Superconducting & Elect Mat, Wollongong, NSW 2500, Australia
[2] Chinese Acad Sci, Inst Chem, Beijing Natl Lab Mol Sci, Key Lab Mol Nanostruct & Nanotechnol, Beijing 100190, Peoples R China
[3] Cent South Univ, State Key Lab Powder Met, Changsha 410083, Hunan, Peoples R China
基金
澳大利亚研究理事会;
关键词
REDUCED GRAPHENE OXIDE; HIGH-PERFORMANCE ANODE; RATE CAPABILITY; POROUS CARBON; SODIUM; LITHIUM; NANOFIBERS; STORAGE; COMPOSITE; CATHODE;
D O I
10.1039/c9ta01615e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Low-cost Na-ion batteries (SIBs) are a promising alternative to Li-ion batteries (LIBs) for large-scale energy storage systems due to the abundant sodium resources and eco-friendliness. The volumetric changes of sodium anodes during the sodiation/desodiation processes, however, reduce the cycling life of Na-ion batteries. In order to solve the problem, we have used the electrospinning method to successfully fabricate mesoporous S/N-doped carbon nanofibers (S/N-C), which show a high capacity and high-rate capability in a Na-ion battery. The S/N-C nanofibers delivered a high reversible capacity of 552.5 and 355.3 mA h g(-1) at 0.1 and 5 A g(-1), respectively, because of the high S-doping (27.95%) in the carbon nanofibers. The introduction of N and S in S/N-C nanofibers increases the active sites for Na+ storage and reduces the energy required for Na+ transfer, as confirmed by in situ Raman spectroscopy and density functional theory (DFT) calculations. Moreover, the mesoporous S/N nanofibers are wetted by liquid electrolyte, which facilitates the Na+ transport and increases the rate performance, thus making them a suitable anode material for SIBs and other electrochemical energy storage devices.
引用
收藏
页码:11976 / 11984
页数:9
相关论文
共 63 条
[1]  
[Anonymous], PEER J
[2]  
[Anonymous], ADV SCI
[3]  
[Anonymous], ADV MAT
[4]   A review of carbon materials and their composites with alloy metals for sodium ion battery anodes [J].
Balogun, Muhammad-Sadeeq ;
Luo, Yang ;
Qiu, Weitao ;
Liu, Peng ;
Tong, Yexiang .
CARBON, 2016, 98 :162-178
[5]   Heteroatom doping and activation of carbon nanofibers enabling ultrafast and stable sodium storage [J].
Bao, Yue ;
Huang, Yuping ;
Song, Xiong ;
Long, Jin ;
Wang, Suqing ;
Ding, Liang-Xin ;
Wang, Haihui .
ELECTROCHIMICA ACTA, 2018, 276 :304-310
[6]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[7]   In-situ formation of tin-antimony sulfide in nitrogen-sulfur Co-doped carbon nanofibers as high performance anode materials for sodium-ion batteries [J].
Chen, Chen ;
Li, Guoqing ;
Zhu, Jiadeng ;
Lu, Yao ;
Jiang, Mengjin ;
Hu, Yi ;
Shen, Zhen ;
Zhang, Xiangwu .
CARBON, 2017, 120 :380-391
[8]   Pyrolytic Carbon Nanosheets for Ultrafast and Ultrastable Sodium-Ion Storage [J].
Cho, Se Youn ;
Kang, Minjee ;
Choi, Jaewon ;
Lee, Min Eui ;
Yoon, Hyeon Ji ;
Kim, Hae Jin ;
Leal, Cecilia ;
Lee, Sungho ;
Jin, Hyoung-Joon ;
Yun, Young Soo .
SMALL, 2018, 14 (17)
[9]   Anodes for Sodium Ion Batteries Based on Tin-Germanium-Antimony Alloys [J].
Farbod, Behdokht ;
Cui, Kai ;
Kalisvaart, W. Peter ;
Kupsta, Martin ;
Zahiri, Benjamin ;
Kohandehghan, Alireza ;
Lotfabad, Elmira Memarzadeh ;
Li, Zhi ;
Luber, Erik J. ;
Mitlin, David .
ACS NANO, 2014, 8 (05) :4415-4429
[10]   A sodium-ion battery exploiting layered oxide cathode, graphite anode and glyme-based electrolyte [J].
Hasa, Ivana ;
Dou, Xinwei ;
Buchholz, Daniel ;
Shao-Horn, Yang ;
Hassoun, Jusef ;
Passerini, Stefano ;
Scrosati, Bruno .
JOURNAL OF POWER SOURCES, 2016, 310 :26-31