Weak solution for fractional (p1, ..., pm)-Laplacian system with Dirichlet-type boundary conditions

被引:0
作者
Sabri, Abdelali [1 ]
Jamea, Ahmed [1 ,2 ]
Alaoui, Hamad Talibi [1 ]
机构
[1] Univ Chouaib Doukkali, Fac Sci, EMAPI, El Jadida, Morocco
[2] Ctr Reg Metiers Educ & Format Casablanca Settat, El Jadida, Morocco
关键词
Existence; Fractional p-Laplacian; Fractional Sobolev space; Uniqueness; Varitional method; Weak solution;
D O I
10.1007/s12215-020-00573-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper, we prove the existence and uniqueness of weak solutions to a class of fractional (p(1), ., p(m))-Laplacian problem with Dirichlet-type boundary conditions, the main tool used here is the variational method combined with the theory of fractional Sobolev spaces.
引用
收藏
页码:1541 / 1560
页数:20
相关论文
共 18 条
  • [1] Abassi A., 2008, International Journal of Mathematics and Statistics, V2, P4
  • [2] Fractional double-phase patterns: concentration and multiplicity of solutions
    Ambrosio, Vincenzo
    Radulescu, Vicentiu D.
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2020, 142 : 101 - 145
  • [4] [Anonymous], 2012, Nonlinear Partial Differ Equ, DOI DOI 10.1007/978-3-642-25361-43
  • [5] Applebaum D., 2009, Levy processes and stochastic calculus
  • [6] Azroul E., 2018, Moroccan J. of Pure and Appl. Anal. (MJPAA), V4, P76
  • [7] Existence of solutions for generalized p(x)-Laplacian systems
    Azroul, Elhoussine
    Balaadich, Farah
    [J]. RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2020, 69 (03) : 1005 - 1015
  • [8] A weak solution to quasilinear elliptic problems with perturbed gradient
    Azroul, Elhoussine
    Balaadich, Farah
    [J]. RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2021, 70 (01) : 151 - 166
  • [9] Semilinear Dirichlet problem for the fractional Laplacian
    Bogdan, Krzysztof
    Jarohs, Sven
    Kania, Edyta
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 193 (193)
  • [10] Hitchhiker's guide to the fractional Sobolev spaces
    Di Nezza, Eleonora
    Palatucci, Giampiero
    Valdinoci, Enrico
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (05): : 521 - 573