Automatic Design of Window Operators for the Segmentation of the Prostate Gland in Magnetic Resonance Images

被引:3
作者
Benalcazar, Marco E. [1 ,2 ]
Brun, Marcel [1 ]
Ballarin, Virginia [1 ]
机构
[1] UNMDP, Grp Procesamiento Digital Imagenes, Mar Del Plata, Buenos Aires, Argentina
[2] Consejo Nacl Invest Cient & Tecn, RA-1033 Buenos Aires, DF, Argentina
来源
VI LATIN AMERICAN CONGRESS ON BIOMEDICAL ENGINEERING (CLAIB 2014) | 2014年 / 49卷
关键词
W-operator; segmentation; magnetic resonance; prostate gland; feed-forward neural network;
D O I
10.1007/978-3-319-13117-7_107
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
W-operators are nonlinear image operators that are translation invariant and locally defined inside a finite spatial window. In this work, we consider the problem of automatic design of W-operators for the segmentation of magnetic resonance (MR) volumes as a problem of classifier design. We propose to segment the objects of interest in an MR volume by classifying each pixel of its slices as either part of the objects of interest or background. The classifiers used here are the artificial feed-forward neural networks. The proposed method is applied to the segmentation of the two main regions of the prostate gland: the peripheral zone and the central gland. Performance evaluation was carried out on the volumes of the Prostate-3T collection of the NCI-ISBI 2013 Challenge. The results obtained show the suitability of our approach as a marker detector of the prostate gland.
引用
收藏
页码:417 / 420
页数:4
相关论文
共 10 条
[1]   Artificial neural networks applied to statistical design of window operators [J].
Benalcazar, Marco E. ;
Brun, Marcel ;
Ballarin, Virginia L. .
PATTERN RECOGNITION LETTERS, 2013, 34 (09) :970-979
[2]  
Bishop C.M., 2005, NEURAL NETWORKS PATT
[3]   Pretreatment evaluation of prostate cancer:: Role of MR imaging and 1H MR spectroscopy [J].
Claus, FG ;
Hricak, H ;
Hattery, RR .
RADIOGRAPHICS, 2004, 24 :S167-S180
[4]   Pattern recognition theory in nonlinear signal processing [J].
Dougherty, ER ;
Barrera, J .
JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2002, 16 (03) :181-197
[5]  
Dougherty G., 2009, DIGITAL IMAGE PROCES
[6]  
Gonzalez R.C., 2008, Digital Image Processing, V3rd
[7]   Aperture filters [J].
Hirata, R ;
Dougherty, ER ;
Barrera, J .
SIGNAL PROCESSING, 2000, 80 (04) :697-721
[8]   Evaluation of prostate segmentation algorithms for MRI: The PROMISE12 challenge [J].
Litjens, Geert ;
Toth, Robert ;
van de Ven, Wendy ;
Hoeks, Caroline ;
Kerkstra, Sjoerd ;
van Ginneken, Bram ;
Vincent, Graham ;
Guillard, Gwenael ;
Birbeck, Neil ;
Zhang, Jindang ;
Strand, Robin ;
Malmberg, Filip ;
Ou, Yangming ;
Davatzikos, Christos ;
Kirschner, Matthias ;
Jung, Florian ;
Yuan, Jing ;
Qiu, Wu ;
Gao, Qinquan ;
Edwards, Philip Eddie ;
Maan, Bianca ;
van der Heijden, Ferdinand ;
Ghose, Soumya ;
Mitra, Jhimli ;
Dowling, Jason ;
Barratt, Dean ;
Huisman, Henkjan ;
Madabhushi, Anant .
MEDICAL IMAGE ANALYSIS, 2014, 18 (02) :359-373
[9]  
Shih FY, 2009, IMAGE PROCESSING MAT
[10]   A Clinically Relevant Approach to Imaging Prostate Cancer: Review [J].
Verma, Sadhna ;
Rajesh, Arumugam .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2011, 196 (03) :S1-S10