A quasi-incompressible diffuse interface model with phase transition

被引:37
|
作者
Aki, Gonca L. [1 ]
Dreyer, Wolfgang [1 ]
Giesselmann, Jan [1 ]
Kraus, Christiane [1 ]
机构
[1] Karl Weierstrass Inst Math, D-10117 Berlin, Germany
来源
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES | 2014年 / 24卷 / 05期
关键词
Multi-component flow; phase transition; asymptotic analysis; sharp interface limit; free boundary problems; Cahn-Hilliard equation; Allen-Cahn equation; Navier-Stokes-Korteweg system; ORDER-PARAMETER; FLUIDS; LIMIT; FLOW;
D O I
10.1142/S0218202513500693
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work introduces a new thermodynamically consistent diffuse model for two-component flows of incompressible fluids. For the introduced diffuse interface model, we investigate physically admissible sharp interface limits by matched asymptotic techniques. To this end, we consider two scaling regimes where in one case we recover the Euler equations and in the other case the Navier-Stokes equations in the bulk phases equipped with admissible interfacial conditions. For the Navier-Stokes regime, we further assume the densities of the fluids are close to each other in the sense of a small parameter which is related to the interfacial thickness of the diffuse model.
引用
收藏
页码:827 / 861
页数:35
相关论文
共 50 条
  • [1] ENERGY CONSISTENT DISCONTINUOUS GALERKIN METHODS FOR A QUASI-INCOMPRESSIBLE DIFFUSE TWO PHASE FLOW MODEL
    Giesselmann, Jan
    Pryer, Tristan
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2015, 49 (01): : 275 - 301
  • [2] STRONG WELL-POSEDNESS OF A DIFFUSE INTERFACE MODEL FOR A VISCOUS, QUASI-INCOMPRESSIBLE TWO-PHASE FLOW
    Abels, Helmut
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2012, 44 (01) : 316 - 340
  • [3] A phase-field model for quasi-incompressible solid-liquid transitions
    Berti, Alessia
    Giorgi, Claudio
    MECCANICA, 2014, 49 (09) : 2087 - 2097
  • [4] A phase-field model for quasi-incompressible solid–liquid transitions
    Alessia Berti
    Claudio Giorgi
    Meccanica, 2014, 49 : 2087 - 2097
  • [5] Local well-posedness of a quasi-incompressible two-phase flow
    Abels, Helmut
    Weber, Josef
    JOURNAL OF EVOLUTION EQUATIONS, 2021, 21 (03) : 3477 - 3502
  • [6] Phase separation in quasi-incompressible Cahn-Hilliard fluids
    Fabrizio, M.
    Giorgi, C.
    Morro, A.
    EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2011, 30 (03) : 281 - 287
  • [7] A compressible mixture model with phase transition
    Dreyer, Wolfgang
    Giesselmann, Jan
    Kraus, Christiane
    PHYSICA D-NONLINEAR PHENOMENA, 2014, 273 : 1 - 13
  • [8] Diffuse-interface two-phase flow models with different densities: A new quasi-incompressible form and a linear energy-stable method
    Roudbari, M. Shokrpour
    Simsek, G.
    van Brummelen, E. H.
    van der Zee, K. G.
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2018, 28 (04): : 733 - 770
  • [9] Phase separation in quasi-incompressible fluids: Cahn-Hilliard model in the Cattaneo-Maxwell framework
    Alessia, Berti
    Bochicchio, Ivana
    Fabrizio, Mauro
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (01): : 135 - 147
  • [10] Solitary waves in slightly dispersive quasi-incompressible hyperelastic materials
    Saccomandi, Giuseppe
    Vergori, Luigi
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2024, 298