Rothe time-discretizationmethod for a nonlinear parabolic p(u)-Laplacian problem with Fourier-type boundary condition and L1-data

被引:0
|
作者
Sabri, Abdelali [1 ]
Jamea, Ahmed [2 ]
机构
[1] Univ Chouaib Doukkali, Fac Sci, El Jadida, Morocco
[2] Ctr Reg Metiers Educ & Format Casablanca Settat, El Jadida, Morocco
关键词
Entropy solution; p(u)-Laplacian; Semi-discretization; Rothe's method; Variable exponent Sobolev space; VARIABLE EXPONENT; ENTROPY SOLUTIONS; EXISTENCE; EQUATIONS;
D O I
10.1007/s11587-020-00544-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove the existence and uniqueness results of entropy solutions to a class of nonlinear parabolic p(u)-Laplacian problem with Fourier-type boundary conditions and L-1-data. The main tool used here is the Rothe method combined with the theory of variable exponent Sobolev spaces.
引用
收藏
页码:609 / 632
页数:24
相关论文
共 5 条