Comparative Genome Assessment of the Two Novel Poly-γ-Glutamic Acid Producing Bacillus Strains

被引:1
|
作者
Tiwari, Deepika Pandey [1 ,2 ]
Chatterjee, Poonam Mishra [1 ,2 ]
Uppadhyaya, Niyati [1 ]
Bhaduri, Anirban [1 ]
Raval, Ritu [2 ]
Dubey, Ashok Kumar [1 ,2 ]
机构
[1] Tata Chem Ltd, Food Sci & Technol, Innovat Ctr, Survey 315,Hissa 1-14,Paud Rd, Pune 412111, Maharashtra, India
[2] Manipal Acad Higher Educ, Dept Biotechnol, Manipal Inst Technol, Manipal 576104, Karnataka, India
关键词
Whole genome sequencing; Bacillus subtilis; Bacillus methylotrophicus; PGA; pgdS; POLY(GAMMA-GLUTAMIC ACID); SUBTILIS; ACTIVATION; DIVERSITY; COMPLEX; GENE; WILD;
D O I
10.22207/JPAM.13.2.03
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Poly-gamma-glutamic acid (PGA) is a homopolyamide, biosynthesized mostly by Bacillus sp. Our study focuses on understanding the genetic differences between the two species of Bacillus for their capability to produce PGA. Genes related to PGA synthesis, regulation, degradation and mannitol utilization of Bacillus subtilis Natto3 (BSN3) were compared with that of B. methylotrophicus IC4 (BMIC4). These strains differed in their genome sizes and average gene lengths. BMIC4 genome size was 4,214,684 bp which was larger than BSN3 comprising of 3,601,055 bp with no plasmid found in either of them. The average gene length of BSN3 and BMIC4 were 843.33 bp and 819.82 bp, respectively with higher number of predicted genes and proteins in BMIC4 (4341 and 4223 respectively). Interestingly, BMIC4 being larger in genome size and gene number, exhibited lesser number of unique pfam results (62) compared to 389 unique pfam of BSN3. Based on 16S rRNA gene sequence, BSN3 and BMIC4 were placed distantly on the phylogenetic tree. Sequence similarity of PGA producing genes ywsC, ywtA and ywtB between BSN3 and BMIC4 was 100%, 100% and 30% respectively. We report the presence of PGA degrading gene pgdS in BMIC4 which is otherwise reportedly absent in various strains of B. methylotrophicus. Sequence variation in the genes may have an impact on the PGA chain length, produced by these strains as BMIC4 produces high molecular weight PGA than BSN3. As B. methylotrophicus is newly discovered species, our comparative study will provide insights on the genomic variability between these two novel PGA producing strains.
引用
收藏
页码:667 / 676
页数:10
相关论文
共 50 条
  • [21] Poly-?-glutamic acid-producing Bacillus velezensis fermentation can improve the feed properties of soybean meal
    Hu, Han
    Wu, Caiyun
    Ge, Fanglan
    Ren, Yao
    Li, Wei
    Li, Jiao
    FOOD BIOSCIENCE, 2023, 53
  • [22] Poly-γ-Glutamic Acid (PGA)-Producing Bacillus Species Isolated from Kinema, Indian Fermented Soybean Food
    Chettri, Rajen
    Bhutia, Meera O.
    Tamang, Jyoti P.
    FRONTIERS IN MICROBIOLOGY, 2016, 7
  • [23] Glutamate dehydrogenase (RocG) in Bacillus licheniformis WX-02: Enzymatic properties and specific functions in glutamic acid synthesis for poly-γ-glutamic acid production
    Tian, Guangming
    Wang, Qin
    Wei, Xuetuan
    Ma, Xin
    Chen, Shouwen
    ENZYME AND MICROBIAL TECHNOLOGY, 2017, 99 : 9 - 15
  • [24] Construction of a mutant Bacillus subtilis strain for high purity poly-γ-glutamic acid production
    He, Linlin
    Liu, Lu
    Ban, Rui
    BIOTECHNOLOGY LETTERS, 2022, 44 (08) : 991 - 1000
  • [25] Metabolic Engineering of Bacillus subtilis for the Production of Poly-γ-Glutamic Acid from Glycerol Feedstock
    Pasotti, Lorenzo
    Massaiu, Ilaria
    Magni, Paolo
    Calvio, Cinzia
    FERMENTATION-BASEL, 2024, 10 (06):
  • [26] Poly-γ-glutamic Acid Production by Bacillus subtilis (natto) under High Salt Conditions
    Sy Le Thanh Nguyen
    Inaoka, Takashi
    Kimura, Keitarou
    JARQ-JAPAN AGRICULTURAL RESEARCH QUARTERLY, 2018, 52 (03): : 249 - 253
  • [27] Regulatory phosphorylation of poly-γ-glutamic acid with phosphate salts in the culture of Bacillus subtilis (natto)
    Kurita, Osamu
    Umetani, Kaori
    Kokean, Yasushi
    Maruyama, Hironori
    Sago, Toru
    Iwamoto, Hiroyuki
    WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY, 2018, 34 (04)
  • [28] Production of Poly-γ-Glutamic Acid by Bacillus subtilis and Bacillus licheniformis with Different Growth Media
    Kedia, Gopal
    Hill, David
    Hill, Robert
    Radecka, Iza
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2010, 10 (09) : 5926 - 5934
  • [29] Expression dynamics of the poly-γ-glutamic acid biosynthesis genes of Bacillus subtilis in response to glucose and glutamic acid-a pilot study
    Tiwari, Deepika Pandey
    Chatterjee, Poonam Mishra
    Rotti, Harish
    Chand, Bipin
    Raval, Ritu
    Dubey, Ashok Kumar
    FEMS MICROBIOLOGY LETTERS, 2018, 365 (22)
  • [30] Efficient Biosynthesis of Low-Molecular-Weight Poly-γ-glutamic Acid Based on Stereochemistry Regulation in Bacillus amyloliquefaciens
    Sha, Yuanyuan
    Huang, Yueyuan
    Zhu, Yifan
    Sun, Tao
    Luo, Zhengshan
    Qiu, Yibin
    Zhan, Yijing
    Peng Lei
    Li, Sha
    Xu, Hong
    ACS SYNTHETIC BIOLOGY, 2020, 9 (06): : 1395 - 1405