Thermal Casimir effect in closed cosmological models with a cosmic string

被引:23
作者
Bezerra, V. B. [1 ]
Mota, H. F. [1 ]
Muniz, C. R. [1 ,2 ]
机构
[1] Univ Fed Paraiba, Dept Phys, CP 5008, BR-58051970 Joao Pessoa, Paraiba, Brazil
[2] Univ Estadual Ceara, Theoret Phys Grp, BR-63500000 Iguatu, CE, Brazil
关键词
QUANTUM VACUUM ENERGY; FINITE-TEMPERATURE; ELECTROMAGNETIC-WAVES; NONZERO TEMPERATURES; GRAVITATIONAL-FIELD; PERFECT CONDUCTORS; EINSTEIN UNIVERSE; FORCE; TOPOLOGY; STRESS;
D O I
10.1103/PhysRevD.89.024015
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We consider the thermal corrections to the Casimir energy of a massless scalar field in the space-time with topology S-3 x R-1 (Einstein and Friedmann universes) containing an idealized cosmic string. The vacuum energy of the field under consideration, in this background, can be separated in two terms: one term that is simply the known vacuum energy of the massless scalar field in the Einstein and Friedmann cosmological models and the other term that formally corresponds to the vacuum energy of the electromagnetic field, also in the Einstein and Friedmann universes, multiplied by the cosmic string parameter lambda = (1/alpha) - 1, where alpha is a constant related to the cosmic string tension, G mu. The Casimir free energy and all the other thermodynamic expressions can also be separated in the same way. Thus, we use the expressions calculated in previous works for the massless scalar and electromagnetic fields in the closed Einstein and Friedmann models to investigate the low- and high-temperature limits of the Casimir free energy, internal energy, and entropy and show the role played by the presence of a cosmic string.
引用
收藏
页数:8
相关论文
共 62 条
  • [1] Planck 2013 results. XXV. Searches for cosmic strings and other topological defects
    Ade, P. A. R.
    Aghanim, N.
    Armitage-Caplan, C.
    Arnaud, M.
    Ashdown, M.
    Atrio-Barandela, F.
    Aumont, J.
    Baccigalupi, C.
    Banday, A. J.
    Barreiro, R. B.
    Bartlett, J. G.
    Bartolo, N.
    Battaner, E.
    Battye, R.
    Benabed, K.
    Benoit, A.
    Benoit-Levy, A.
    Bernard, J. -P.
    Bersanelli, M.
    Bielewicz, P.
    Bobin, J.
    Bock, J. J.
    Bonaldi, A.
    Bonavera, L.
    Bond, J. R.
    Borrill, J.
    Bouchet, F. R.
    Bridges, M.
    Bucher, M.
    Burigana, C.
    Butler, R. C.
    Cardoso, J. -F.
    Catalano, A.
    Challinor, A.
    Chamballu, A.
    Chiang, L. -Y
    Chiang, H. C.
    Christensen, P. R.
    Church, S.
    Clements, D. L.
    Colombi, S.
    Colombo, L. P. L.
    Couchot, F.
    Coulais, A.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    Danese, L.
    Davies, R. D.
    Davis, R. J.
    [J]. ASTRONOMY & ASTROPHYSICS, 2014, 571
  • [2] SPINOR FIELDS IN AN EINSTEIN UNIVERSE - FINITE-TEMPERATURE EFFECTS
    ALTAIE, MB
    DOWKER, JS
    [J]. PHYSICAL REVIEW D, 1978, 18 (10): : 3557 - 3564
  • [3] [Anonymous], 2008, GEN ABEL PLANA FORMU
  • [4] ELECTROMAGNETIC-WAVES NEAR PERFECT CONDUCTORS .1. MULTIPLE-SCATTERING EXPANSIONS - DISTRIBUTION OF MODES
    BALIAN, R
    DUPLANTIER, B
    [J]. ANNALS OF PHYSICS, 1977, 104 (02) : 300 - 335
  • [5] ELECTROMAGNETIC-WAVES NEAR PERFECT CONDUCTORS .2. CASIMIR EFFECT
    BALIAN, R
    DUPLANTIER, B
    [J]. ANNALS OF PHYSICS, 1978, 112 (01) : 165 - 208
  • [6] Thermal Casimir effect for neutrino and electromagnetic fields in the closed Friedmann cosmological model
    Bezerra, V. B.
    Mostepanenko, V. M.
    Mota, H. F.
    Romero, C.
    [J]. PHYSICAL REVIEW D, 2011, 84 (10)
  • [7] Thermal Casimir effect in closed Friedmann universe revisited
    Bezerra, V. B.
    Klimchitskaya, G. L.
    Mostepanenko, V. M.
    Romero, C.
    [J]. PHYSICAL REVIEW D, 2011, 83 (10)
  • [8] Constraints on non-Newtonian gravity from measuring the Casimir force in a configuration with nanoscale rectangular corrugations
    Bezerra, V. B.
    Klimchitskaya, G. L.
    Mostepanenko, V. M.
    Romero, C.
    [J]. PHYSICAL REVIEW D, 2011, 83 (07):
  • [9] Advance and prospects in constraining the Yukawa-type corrections to Newtonian gravity from the Casimir effect
    Bezerra, V. B.
    Klimchitskaya, G. L.
    Mostepanenko, V. M.
    Romero, C.
    [J]. PHYSICAL REVIEW D, 2010, 81 (05):
  • [10] Birrell Davies, 1982, Quantum Fields in Curved Space