Deep Learning Features Improve the Performance of a Radiomics Signature for Predicting KRAS Status in Patients with Colorectal Cancer

被引:44
作者
Wu, Xiaomei [1 ,2 ]
Li, Yajun [5 ]
Chen, Xin [3 ]
Huang, Yanqi [2 ]
He, Lan [2 ]
Zhao, Ke [1 ,2 ]
Huang, Xiaomei [2 ,4 ]
Zhang, Wen [4 ]
Huang, Yucun [4 ]
Li, Yexing [2 ]
Dong, Mengyi [2 ,4 ]
Huang, Jia [2 ,5 ]
Xia, Ting [1 ,2 ]
Liang, Changhong [2 ]
Liu, Zaiyi [2 ]
机构
[1] South China Univ Technol, Sch Med, Guangzhou, Guangdong, Peoples R China
[2] Guangdong Acad Med Sci, Guangdong Prov Peoples Hosp, Dept Radiol, 106 Zhongshan Er Rd, Guangzhou, Guangdong, Peoples R China
[3] Guangzhou First Peoples Hosp, Dept Radiol, Guangzhou, Guangdong, Peoples R China
[4] Southern Med Univ, Guangzhou, Guangdong, Peoples R China
[5] Shantou Univ, Shantou, Guangdong, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Colorectal cancer; Diagnostic imaging; Deep learning; Mutation; MUTATIONS; HETEROGENEITY; ASSOCIATION; VALIDATION; IMAGES; PET/CT; BRAF;
D O I
10.1016/j.acra.2019.12.007
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Rationale and Objectives: We assess the performance of a model combining a deep convolutional neural network and a hand-crafted radiomics signature for predicting KRAS status in patients with colorectal cancer (CRC). Materials and Methods: The primary cohort consisted of 279 patients with clinicopathologically confirmed CRC between April 2011 and April 2015. Portal venous phase computed tomographic images were analyzed to extract traditional hand-crafted radiomics features as well as deep learning features. A Wilcoxon rank sum test, the minimum redundancy maximum relevance algorithm, and multivariable logistic regression analysis were used to select features and build a radiomics signature. A combined model was then developed using multivariable logistic regression analysis. An independent validation cohort of 119 patients from May 2015 to April 2016 was used to confirm the combined model's predictive performance. Results: The C-index of hand-crafted radiomics signature's discriminative ability was 0.719 (95% confidence interval, CI: 0.658-0.776) for the primary cohort and 0.720 (95% CI: 0.625-0.813) for the validation cohort. The C-index of the deep radiomics signature's discriminative ability was 0.754 (95% CI: 0.696-0.813) for the primary cohort and 0.786 (95% CI: 0.702-0.863) for the validation cohort. The combined model, which merged the hand-crafted radiomics features and deep radiomics features, achieve a C-index of 0.815 (95% CI: 0.766-0.868) for the primary cohort and 0.832 (95% CI: 0.762-0.905) for the validation cohort. Conclusion: This study presents a model that incorporates the hand-crafted and deep radiomics signature, which can be used for individualized preoperative prediction of KRAS mutations in patients with CRC.
引用
收藏
页码:E254 / E262
页数:9
相关论文
共 40 条
[21]   Diagnostic accuracy of computed tomography for colon cancer staging: A systematic review [J].
Leufkens, Anke M. ;
van den Bosch, Maurice A. A. J. ;
van Leeuwen, Maarten S. ;
Siersema, Peter D. .
SCANDINAVIAN JOURNAL OF GASTROENTEROLOGY, 2011, 46 (7-8) :887-894
[22]   KRAS mutations as an independent prognostic factor in patients with advanced colorectal cancer treated with cetuximab [J].
Lievre, Astrid ;
Bachet, Jean-Baptiste ;
Boige, Valerie ;
Cayre, Anne ;
Le Corre, Delphine ;
Buc, Emmanuel ;
Ychou, Marc ;
Bouche, Olivier ;
Landi, Bruno ;
Louvet, Christophe ;
Andre, Thierry ;
Bibeau, Frederic ;
Diebold, Marie-Daniele ;
Rougier, Philippe ;
Ducreux, Michel ;
Tomasic, Gorana ;
Emile, Jean-Francois ;
Penault-Llorca, Frederique ;
Laurent-Puig, Pierre .
JOURNAL OF CLINICAL ONCOLOGY, 2008, 26 (03) :374-379
[23]   FDG PET/CT radiomics for predicting the outcome of locally advanced rectal cancer [J].
Lovinfosse, Pierre ;
Polus, Marc ;
Van Daele, Daniel ;
Martinive, Philippe ;
Daenen, Frederic ;
Hatt, Mathieu ;
Visvikis, Dimitris ;
Koopmansch, Benjamin ;
Lambert, Frederic ;
Coimbra, Carla ;
Seidel, Laurence ;
Albert, Adelin ;
Delvenne, Philippe ;
Hustinx, Roland .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2018, 45 (03) :365-375
[24]   18F-FDG PET/CT imaging in rectal cancer: relationship with the RAS mutational status [J].
Lovinfosse, Pierre ;
Koopmansch, Benjamin ;
Lambert, Frederic ;
Jodogne, Sebastien ;
Kustermans, Gaelle ;
Hatt, Mathieu ;
Visvikis, Dimitris ;
Seidel, Laurence ;
Polus, Marc ;
Albert, Adelin ;
Delvenne, Philippe ;
Hustinx, Roland .
BRITISH JOURNAL OF RADIOLOGY, 2016, 89 (1063)
[25]   CT textural analysis of hepatic metastatic colorectal cancer: pre-treatment tumor heterogeneity correlates with pathology and clinical outcomes [J].
Lubner, Meghan G. ;
Stabo, Nicholas ;
Lubner, Sam J. ;
del Rio, Alejandro Munoz ;
Song, Chihwa ;
Halberg, Richard B. ;
Pickhardt, Perry J. .
ABDOMINAL IMAGING, 2015, 40 (07) :2331-2337
[26]   Multifunctional Imaging Signature for V-KI-RAS2 Kirsten Rat Sarcoma Viral Oncogene Homo log (KRAS) Mutations in Colorectal Cancer [J].
Miles, Kenneth A. ;
Ganeshan, Balaji ;
Rodriguez-Justo, Manuel ;
Goh, Vicky J. ;
Ziauddin, Zia ;
Engledow, Alec ;
Meagher, Marie ;
Endozo, Raymondo ;
Taylor, Stuart A. ;
Halligan, Stephen ;
Ell, Peter J. ;
Groves, Ashley M. .
JOURNAL OF NUCLEAR MEDICINE, 2014, 55 (03) :386-391
[27]   Deep Feature Transfer Learning in Combination with Traditional Features Predicts Survival Among Patients with Lung Adenocarcinoma [J].
Paul, Rahul ;
Hawkins, Samuel H. ;
Balagurunathan, Yoganand ;
Schabath, Matthew B. ;
Gillies, Robert J. ;
Hall, Lawrence O. ;
Goldgof, Dmitry B. .
TOMOGRAPHY, 2016, 2 (04) :388-395
[28]   Residual convolutional neural network for predicting response of transarterial chemoembolization in hepatocellular carcinoma from CT imaging [J].
Peng, Jie ;
Kang, Shuai ;
Ning, Zhengyuan ;
Deng, Hangxia ;
Shen, Jingxian ;
Xu, Yikai ;
Zhang, Jing ;
Zhao, Wei ;
Li, Xinling ;
Gong, Wuxing ;
Huang, Jinhua ;
Liu, Li .
EUROPEAN RADIOLOGY, 2020, 30 (01) :413-424
[29]   Effect of interleukin-1β inhibition with canakinumab on incident lung cancer in patients with atherosclerosis: exploratory results from a randomised, double-blind, placebo-controlled trial [J].
Ridker, Paul M. ;
MacFadyen, Jean G. ;
Thuren, Tom ;
Everett, Brendan M. ;
Libby, Peter ;
Glynn, Robert J. .
LANCET, 2017, 390 (10105) :1833-1842
[30]   Prognostic Role of KRAS and BRAF in Stage II and III Resected Colon Cancer: Results of the Translational Study on the PETACC-3, EORTC 40993, SAKK 60-00 Trial [J].
Roth, Arnaud D. ;
Tejpar, Sabine ;
Delorenzi, Mauro ;
Yan, Pu ;
Fiocca, Roberto ;
Klingbiel, Dirk ;
Dietrich, Daniel ;
Biesmans, Bart ;
Bodoky, Gyoergy ;
Barone, Carlo ;
Aranda, Enrique ;
Nordlinger, Bernard ;
Cisar, Laura ;
Labianca, Roberto ;
Cunningham, David ;
Van Cutsem, Eric ;
Bosman, Fred .
JOURNAL OF CLINICAL ONCOLOGY, 2010, 28 (03) :466-474