Deep Learning Features Improve the Performance of a Radiomics Signature for Predicting KRAS Status in Patients with Colorectal Cancer

被引:43
作者
Wu, Xiaomei [1 ,2 ]
Li, Yajun [5 ]
Chen, Xin [3 ]
Huang, Yanqi [2 ]
He, Lan [2 ]
Zhao, Ke [1 ,2 ]
Huang, Xiaomei [2 ,4 ]
Zhang, Wen [4 ]
Huang, Yucun [4 ]
Li, Yexing [2 ]
Dong, Mengyi [2 ,4 ]
Huang, Jia [2 ,5 ]
Xia, Ting [1 ,2 ]
Liang, Changhong [2 ]
Liu, Zaiyi [2 ]
机构
[1] South China Univ Technol, Sch Med, Guangzhou, Guangdong, Peoples R China
[2] Guangdong Acad Med Sci, Guangdong Prov Peoples Hosp, Dept Radiol, 106 Zhongshan Er Rd, Guangzhou, Guangdong, Peoples R China
[3] Guangzhou First Peoples Hosp, Dept Radiol, Guangzhou, Guangdong, Peoples R China
[4] Southern Med Univ, Guangzhou, Guangdong, Peoples R China
[5] Shantou Univ, Shantou, Guangdong, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Colorectal cancer; Diagnostic imaging; Deep learning; Mutation; MUTATIONS; HETEROGENEITY; ASSOCIATION; VALIDATION; IMAGES; PET/CT; BRAF;
D O I
10.1016/j.acra.2019.12.007
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Rationale and Objectives: We assess the performance of a model combining a deep convolutional neural network and a hand-crafted radiomics signature for predicting KRAS status in patients with colorectal cancer (CRC). Materials and Methods: The primary cohort consisted of 279 patients with clinicopathologically confirmed CRC between April 2011 and April 2015. Portal venous phase computed tomographic images were analyzed to extract traditional hand-crafted radiomics features as well as deep learning features. A Wilcoxon rank sum test, the minimum redundancy maximum relevance algorithm, and multivariable logistic regression analysis were used to select features and build a radiomics signature. A combined model was then developed using multivariable logistic regression analysis. An independent validation cohort of 119 patients from May 2015 to April 2016 was used to confirm the combined model's predictive performance. Results: The C-index of hand-crafted radiomics signature's discriminative ability was 0.719 (95% confidence interval, CI: 0.658-0.776) for the primary cohort and 0.720 (95% CI: 0.625-0.813) for the validation cohort. The C-index of the deep radiomics signature's discriminative ability was 0.754 (95% CI: 0.696-0.813) for the primary cohort and 0.786 (95% CI: 0.702-0.863) for the validation cohort. The combined model, which merged the hand-crafted radiomics features and deep radiomics features, achieve a C-index of 0.815 (95% CI: 0.766-0.868) for the primary cohort and 0.832 (95% CI: 0.762-0.905) for the validation cohort. Conclusion: This study presents a model that incorporates the hand-crafted and deep radiomics signature, which can be used for individualized preoperative prediction of KRAS mutations in patients with CRC.
引用
收藏
页码:E254 / E262
页数:9
相关论文
共 40 条
[1]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[2]   Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer [J].
Amado, Rafael G. ;
Wolf, Michael ;
Peeters, Marc ;
Van Cutsem, Eric ;
Siena, Salvatore ;
Freeman, Daniel J. ;
Juan, Todd ;
Sikorski, Robert ;
Suggs, Sid ;
Radinsky, Robert ;
Patterson, Scott D. ;
Chang, David D. .
JOURNAL OF CLINICAL ONCOLOGY, 2008, 26 (10) :1626-1634
[3]   Mutations of KRAS and BRAF in primary and matched metastatic sites of colorectal cancer [J].
Artale, Salvatore ;
Sartore-Bianchi, Andrea ;
Veronese, Silvio Marco ;
Gambi, Valentina ;
Sarnataro, Carolina Silvia ;
Gambacorta, Marcello ;
Lauricella, Calogero ;
Siena, Salvatore .
JOURNAL OF CLINICAL ONCOLOGY, 2008, 26 (25) :4217-4219
[4]   Radiomics of CT Features May Be Nonreproducible and Redundant: Influence of CT Acquisition Parameters [J].
Berenguer, Roberto ;
del Rosario Pastor-Juan, Maria ;
Canales-Vazquez, Jesus ;
Castro-Garcia, Miguel ;
Villas, Maria Victoria ;
Mansilla Legorburo, Francisco ;
Sabater, Sebastia .
RADIOLOGY, 2018, 288 (02) :407-415
[5]   Molecular markers for bladder cancer: the road to a multimarker approach [J].
Birkhahn, Marc ;
Mitra, Anirban P. ;
Cote, Richard J. .
EXPERT REVIEW OF ANTICANCER THERAPY, 2007, 7 (12) :1717-1727
[6]  
Bray F, 2018, CA-CANCER J CLIN, V68, P394, DOI [10.3322/caac.21492, 10.3322/caac.21609]
[7]   Correlation between KRAS mutation and 18F-FDG uptake in stage IV colorectal cancer [J].
Cho, Arthur ;
Jo, Kwanhyeong ;
Hwang, Sang Hyun ;
Lee, Narae ;
Jung, Minkyu ;
Yun, Mijin ;
Hwang, Hee Sung .
ABDOMINAL RADIOLOGY, 2017, 42 (06) :1621-1626
[8]  
Collins GS, 2015, ANN INTERN MED, V162, P55, DOI [10.1111/eci.12376, 10.7326/M14-0698, 10.1038/bjc.2014.639, 10.1186/s12916-014-0241-z, 10.7326/M14-0697, 10.1016/j.jclinepi.2014.11.010, 10.1016/j.eururo.2014.11.025, 10.1136/bmj.g7594, 10.1002/bjs.9736]
[9]   Dermatologist-level classification of skin cancer with deep neural networks [J].
Esteva, Andre ;
Kuprel, Brett ;
Novoa, Roberto A. ;
Ko, Justin ;
Swetter, Susan M. ;
Blau, Helen M. ;
Thrun, Sebastian .
NATURE, 2017, 542 (7639) :115-+
[10]   Intratumor Heterogeneity and Branched Evolution Revealed by Multiregion Sequencing [J].
Gerlinger, Marco ;
Rowan, Andrew J. ;
Horswell, Stuart ;
Larkin, James ;
Endesfelder, David ;
Gronroos, Eva ;
Martinez, Pierre ;
Matthews, Nicholas ;
Stewart, Aengus ;
Tarpey, Patrick ;
Varela, Ignacio ;
Phillimore, Benjamin ;
Begum, Sharmin ;
McDonald, Neil Q. ;
Butler, Adam ;
Jones, David ;
Raine, Keiran ;
Latimer, Calli ;
Santos, Claudio R. ;
Nohadani, Mahrokh ;
Eklund, Aron C. ;
Spencer-Dene, Bradley ;
Clark, Graham ;
Pickering, Lisa ;
Stamp, Gordon ;
Gore, Martin ;
Szallasi, Zoltan ;
Downward, Julian ;
Futreal, P. Andrew ;
Swanton, Charles .
NEW ENGLAND JOURNAL OF MEDICINE, 2012, 366 (10) :883-892