Solution of quantum Langevin equation: Approximations, theoretical and numerical aspects

被引:54
作者
Banerjee, D [1 ]
Bag, BC
Banik, SK
Ray, DS
机构
[1] Indian Assoc Cultivat Sci, Jadavpur 700032, Kolkata, India
[2] Visva Bharati Univ, Dept Chem, Santini Ketan 731235, W Bengal, India
关键词
D O I
10.1063/1.1711593
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Based on a coherent state representation of noise operator and an ensemble averaging procedure using Wigner canonical thermal distribution for harmonic oscillators, a generalized quantum Langevin equation has been recently developed [Phys. Rev. E 65, 021109 (2002); 66, 051106 (2002)] to derive the equations of motion for probability distribution functions in c-number phase-space. We extend the treatment to explore several systematic approximation schemes for the solutions of the Langevin equation for nonlinear potentials for a wide range of noise correlation, strength and temperature down to the vacuum limit. The method is exemplified by an analytic application to harmonic oscillator for arbitrary memory kernel and with the help of a numerical calculation of barrier crossing, in a cubic potential to demonstrate the quantum Kramers' turnover and the quantum Arrhenius plot. (C) 2004 American Institute of Physics.
引用
收藏
页码:8960 / 8972
页数:13
相关论文
共 35 条
  • [1] Strong friction limit in quantum mechanics: The quantum Smoluchowski equation
    Ankerhold, J
    Pechukas, P
    Grabert, H
    [J]. PHYSICAL REVIEW LETTERS, 2001, 87 (08) : 86802 - 1
  • [2] [Anonymous], ADV MULTIPHOTON PROC
  • [3] Quantum Kramers equation for energy diffusion and barrier crossing dynamics in the low-friction regime
    Banerjee, D
    Banik, SK
    Bag, BC
    Ray, DS
    [J]. PHYSICAL REVIEW E, 2002, 66 (05): : 20
  • [4] Quantum Smoluchowski equation: escape from a metastable state
    Banerjee, D
    Bag, BC
    Banik, SK
    Ray, DS
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 318 (1-2) : 6 - 13
  • [5] Approach to quantum Kramers' equation and barrier crossing dynamics
    Banerjee, D
    Bag, BC
    Banik, SK
    Ray, DS
    [J]. PHYSICAL REVIEW E, 2002, 65 (02): : 1 - 021109
  • [6] Generalized quantum Fokker-Planck, diffusion, and Smoluchowski equations with true probability distribution functions
    Banik, Suman Kumar
    Bag, Bidhan Chandra
    Ray, Deb Shankar
    [J]. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2002, 65 (05): : 1 - 051106
  • [7] Barabasi A.-L., 1995, FRACTAL CONCEPTS SUR, DOI [10.1017/CBO9780511599798, DOI 10.1017/CBO9780511599798]
  • [8] Quantum phase-space function formulation of reactive flux theory
    Barik, D
    Banik, SK
    Ray, DS
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2003, 119 (02) : 680 - 695
  • [9] PATH INTEGRAL APPROACH TO QUANTUM BROWNIAN-MOTION
    CALDEIRA, AO
    LEGGETT, AJ
    [J]. PHYSICA A, 1983, 121 (03): : 587 - 616
  • [10] NON-MARKOVIAN THEORY OF ACTIVATED RATE-PROCESSES .1. FORMALISM
    CARMELI, B
    NITZAN, A
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1983, 79 (01) : 393 - 404